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EVALUATION OF DENSITIES AND DISTRIBUTIONS  VIA HERiMITE AND GENERALIZED 

LAGUERRE SERIES  EMPLOVING HIGH-ORDER EXPANSION  COEFFICIENTS 

DETERMINED  RECURSIVELY   VIA MOMENTS OR CUMULANTS 

INTRODUCTION 

'In the theoretical analysis of performance of some systems with 

nonlinearities and/or memory, it often happens that the only statistics about 

the decision (or output) random variable of interest that can be easily found 

are the moments, or in other cases, the cumulants. Explicit relations for the 

low-order expansion coefficients in Edgeworth or Gram-Charlier series are 

available in terms of the available moments or cumulants [1, pp. 172 and 191], 

[2, pp. 223 and 225], [3, pp. 157 and 159]. However, for higher-order moments 

and cumulants, these explicit nonrecursive relations are very  tedious to 

derive, become extremely lengthy, and are not practical to use. 

We will address the problem of obtaining accurate high-order series 

expansion approximations of the probability density function and cumulative 

distribution function of a random variable of interest, in terms of the 

available moments or cumulants of that random variable. The necessity of 

being able to approximate probability density functions and cumulative 

distribution functions from knowledge of either the moments or the cumulants, 

is that some physical problems have these particular statistics as natural and 

convenient starting points. For example, if a physical processor sums 

together a number of independent Rician random variates, the characteristic 

function and cumulants of the individual random variables or their sum are not 

available in any useful analytic form; however, the high-order moments of an 
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individual Rician variate can be easily and accurately evaluated by 

recurrence, and thereby the moments of the sum can be obtained. Conversely, 

for shot noise with random amplitude and duration modulation, the probability 

density function is not readily available, whereas the characteristic function 

is, and the cumulants are simple to evaluate [4, appendix C]. 

The particular series expansions we employ are based on the two special 

classes of weighting functions 

w(u) = r?— expf- ^^~^'        for all u    Hermite (1) 

and 

/  N    u" eXp(-u/0)    £ ^ n ■   ^ I /o\ w(u) =  -irr^      for u > 0    generalized Laguerre.     (2) 

The orthonormal polynomials associated with these weightings are directly 

related to the Hermite and generalized Laguerre polynomials, respectively 

[5, 22.2.15 and 22.2.13]. The weightings each have two free parameters, a and 

6, which can be manipulated to advantage in obtaining finite (high-order) 

series expansions which well approximate a given (unknown) probability density 

function and cumulative distribution function. 

The question of when a set of moments uniquely determines the probability 

density function is a difficult one; see, for example, [3, pp. 109-112 and 

179]. Also, the convergence of the series is very involved [2, pp. 223 and 

258], [3, pp. 151-163]. But, even if the series is divergent, use of a 

limited number of expansion coefficients often gives a satisfactory 

approximation to the desired probability density function [3, p. 167]. We 
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presume here that the moments do uniquely determine the probability density 

function and are buoyed in that respect by the comment [3, p. 87] that most 

distributions in statistical practice do possess this property. 

The main idea in the series expansion approach here is not necessarily to 

get as many terms as possible, but rather to get as rapid convergence as 

possible of the series.  If a particular choice of weighting parameters a and 

B results in sufficiently small expansion coefficients, say, at order 10, this 

is better than another choice of a and e where 20 or 30 terms are required for 

the same size coefficients. In fact, if o and e could be chosen such that the 

series terminated (zero coefficients) after a few terms, that would be ideal; 

however, this is not the case, and in fact, the choice of a and 6 requires 

some trial-and-error to achieve rapidly decreasing coefficients. 

The expansion coefficients of a given probability density function, in an 

orthonormal set of Hermite or generalized Laguerre polynomials, are denoted by 

l^n>0' ^^^'"^ '^ "i^ ^^^  number of available or known moments or cumulants. 

Very often, the choice of a and B in (1) or (2) has been made such that 

b-[^ = 0 and b2 = 0, for purposes of analytic simplicity and for hopeful 

early termination of the series; see for example [1, pp. 171 and 191], 

[2, p. 223], [3, p. 159]. However, it will be demonstrated that this is 

generally not the best choice, and that more rapidly decaying coefficients can 

be achieved by other (mismatched) values of a  and 3, which must be searched 

for numerically; this possibility is also mentioned in [3, p. 164].  In fact, 

an example will be given which illustrates that the choice of parameters a and 

B to make expansion coefficients b^ and bg zero, can in fact, lead to a 

divergent Hermite series. 
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Depending on the available information about the probability density 

function, i.e., moments or cumulants, a variety of methods will be given for 

determining the expansion coefficients [b3. In particular, for both the 

Hermite and generalized Laguerre series, we can get the coefficients by three 

different procedures: 

(a) recursively via cumulants, 

(b) directly   via moments, 

(c) recursively via moments. 

The reason for having these alternatives is that the calculation of expansion 

coefficients \h\  for high-order n invariably runs into large round-off 

error.  In order to reduce this round-off error, the amount of 

number-crunching on the computer should be minimized, and any spurious 

transformations between moments and cumulants should be avoided if possible. 

Thus it is desireable to have techniques which can accomplish the desired goal 

of evaluating expansion coefficients [b 1 as directly as possible from the 

available information. The use of different alternatives also enables 

comparisons of the computed expansion coefficients and thereby furnishes 

quantitative assessment of the amount of round-off error. Recursive 

inter-relationships between moments, central moments, and cumulants are given 

in [5], including cases of two dependent random variables. 
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FUNDAMENTAL EQUATIONS 

DEFINITION OF STATISTICS ■   - 

Suppose a function p has known moments* 

Uf, = fdu u" p(u)  for 0 < n < N .       ' (3) 

The function p need not have unit area, i.e., UQ ^ 1 is allowed, and p can 

become negative at some arguments u. Nevertheless, for convenience, and since 

most of our applications are to random variables, we shall refer to p as a 

probability density function, and to its running integral 
a 

P(u) = [dt p{t) (4) 
—OO 

as a cumulative distribution function. We shall presume that UQ > 0 in all 

cases. 

The characteristic function corresponding to probability density function 

p is the Fourier transform 

f(if) = Jdu exp(i^u) p(u) . (5) 

When f is expanded in a power series, the result is 

f(i5) =   2:   ^i'^f)''!^- (6) 
n=0 

Integrals without limits are over the range of nonzero integrand. 
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in terms of the moments in (3). Alternatively, if Xn f is expanded in a power 

series, ^ 

In f(i;) = ^ Xn ^^^yi^-   '     V        :  (7) 
n=0 

where the quantities [X^^ are the cumulants of p or f. Observe that 

generally, to the lowest three orders, 

%Q =Jn f(0) =in ug ^ 0 , 

'X^-'-^-M • ' (B) 2  ug  \uoy 

The available information on probability density function p will be 

either 

moments {^^^Q      or cumulants tX^Q    - (9) 

Whichever is available, we wish to get high-order accurate approximations to p 

and cumulative distribution function P in (4); that is, values of N in the 

order of 10 to 100 are of interest. 
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WEIGHTING FUNCTION PROPERTIES 

We select a nonnegative weighting function w such that 

w(u) > 0 at least where p(u) 4 0. (10) 

We also disallow any impulses in w. The moments of weighting w are defined 

analogously to (3) as 

v = 1 du u w(u)  for n >_ 0 ; (H) 

it is presumed that these quantities can be evaluated for as large n as 

required. 

Suppose weighting w has r free parameters (plus a scaling parameter). It 

might then seem beneficial to choose them such that the moments of w and p are 

approximately equal, 

v^ ^ u^  for 1 < n <_ r  (plus VQ ^ HQ) , (12) 

for then the abscissa scales of w and p would tend to match. However, (12) 

will turn out to be not so desireable, and the choice of the r weighting 

parameter values should be based on another criterion. The ordinate scale of 

w is actually immaterial, since the expansion coefficients (b "^ will absorb 

this scaling; so henceforth we presume that vg = 1 with no loss of 

generality. 
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APPROXIMATION PROCEDURE 

Let Q be any n-th order polynomial, and approximate probability , 

density function p by function 

N 
p.(u)=w(u) ^ b 0 (u)  where w(u) > 0 , (13) 

^        n=0  " " 

where (b JQ are the expansion coefficients. Define weighted squared 

error 

r N 

=   dU Y(U) [P(U)-W(U)  ^  b^ Qn^")^^ ' (^^) 

where error-weighting y is nonnegative.  If we minimize E^^ by choice of 

expansion coefficients (b^Q, there follows the set of linear equations 

b^ Vdu Y(U) W2(U) Q^(U) Q^(U) = 1 du Y(U) W(U) p(u) Q|^(u)  for U < k < N. 

= 1 du Y(U) [p(u)-P[^(u)] = 

4 
n=0 

In order to use only the available information in (9) about p, the right-hand 

side of (15) must simplify according to the selection 

Y(U) =—7—7  where w(u) > 0 (and arbitrary elsewhere). (16) 

Furthermore, since constant K merely scales error E^^, and appears on both 

sides of (15), we can set K = 1 without loss of generality. Then (14) becomes 
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r , >    H_ -\Z 
J du w(u) ^ - ^    b^ Q^{u)    where w(u) > 0 ,     (17) 

and (15) reduces to 

N 
b^ fdu w(u) Q^(u) Q^(u) = J du p(u) Q^(u)  for 0 < k £ 18) 

,r     M  1 1^ ri .1 K —    — 
n=L 

In general, this is N+1 simultaneous linear equations in the N+1 unknowns 

r 1 N k 
|b ]Q. The choice Q|,(u) = u would lead to an apparently simple set 

of equations, when (11) and (3) are used. However, a few numerical examples 

quickly reveals that they are very ill-conditioned, due to the character of 

the nondiagonal matrix with elements 

j du w(u)   Q|^(u)  Q^(u)      forO<k,n<N (19) 

that appears on the left-hand side of (18). In order to avoid the significant 

round-off error associated with solving such a system for large N, we choose 

CniO ^° ^^ ^ ^^^  °^ orthonormal polynomials with respect to weighting 

w; i.e., (19) is 1 for k = n, and 0 otherwise. Also recall that 

VQ = J du w(u) = 1 without loss of generality. 

Equation (18) then reduces to an explicit relation for the expansion 

coefficients: 

b^ = r du p(u) Q|^(u)  for 0 <_ k < N , (20) 

and (17) for the error becomes merely 
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It will be presumed that the integral in (21) is finite; otherwise, the 

error would be infinite, which is a meaningless problem. This will put some 

restrictions on the parameter choices of weighting w, since this error 

integral depends on these parameters as well as on the given probability 

density function p. The sum of squares in (21) must then be bounded, and in 

fact affords a measure of the adequacy of approximation (13), by saturating 

(at an apriori unknown value) for large N. 

As N increases, the values of the lower-order expansion coefficients 

I kJ ^" ^^^^ "^^ "°^ change. Therefore they only have to be computed once 

and do not have to be revised as more terms are added in series approximation 

(13), i.e., larger H. 

EQUALITY OF PROBABILITY DENSITY FUNCTION MOMENTS 

A very  important property of expansion (13) is obtained as follows: 

jdu Q^(u) Pf^(u) = Jdu Q^(u) w(u) 5 b^ Qn(Li) = 

= b^ = Jdu Q^(u) p(u)  for 0 < k < N , (22) 

where we used, in order, (13), the orthonormality of (19), and (20). But 

since Qj^ is a k-th order polynomial, relation (22) states that approximation 

PM has exactly the same moments as given probability density function p, 

from order 0 through order N. This matching of moments between probability 

density functions p^  and p has been achieved regardless of the weighting w 

and its particular parameter values. Furthermore, (22) holds independently of 

whether the weighting-moment equalities in (12) are satisfied or not. 

10 
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The cumulative distribution function corresponding to approximation p. 

is defined as 
IX. 

N 
u. 

P^(u) = 1 dt pjt) = 
n=0 n J 

dt w(t) Q^(t) (23) 

Its utility depends on getting closed forms and simple recursions for the 

general integral on the right-hand side. 

PARAMETERS OF GIVEN PROBABILITY DENSITY FUNCTION p 

The moments of p were defined in (3).  It is useful to define three 

important parameters of p: 

Area A = 1 du p{u) = UQ  (PQ > 0, but need not be 1); 

M   i  4.•  M   Idu u p(u)  ^1 Mean Location M = r .,, "/f.^  = — ; jdu p u    UQ '  . 

RMS Width R = l^finV^ ^_2   ri 
'0 ~ Vo 

2^.2^ 

2-1 
(24) 

(Conversely, UQ = A, v,-^ =  AM, yg = A(M +R ).) These parameters 

depend on the probability density function p that we are trying to approximate 

and can be computed from the available information (9). They are useful for 

determining where the major concentration of p(u) lies on the u-scale, and 

have obvious physical interpretations. 

In terms of the cumulants of p defined in (5)-(8), we have the 

alternative expressions 

11 
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or conversely 

'A 
R =/_2 , 

x,=;^-;^^ '2 - M 
= R' 

0   V^Oy 

(25) 

(25) 

GENERAL RESULTS FOR THREE LOWEST-ORDER POLYNOMIALS Q 

The weighting function w and associated orthonormal polynomials satisfy 

the following equation: 

Jdu w(u) Q^(u) Q^(u) = 5^^ . (27) 

Also we have weighting moments 

V = 1 du u" w(u),  with VQ = 1 . 

It  is then a straightforward matter to evaluate the three lowest-order 

orthonormal  polynomials: 

(28) 

where 

Qo(u) = 1 , 

Ql(u)   = ■[J-(U-V-L)   , 

Q2(u) 
2  L 

2/ 2x - u(v3-v2v^)  +  (v^-v^) (29) 

12 
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n   (        2/i 

The general expansion coefficients in (20) then become 

^0 = ^0 ' 

1/ 
^1 ^D^^^'VO^ ' 

(30) 

1 r       2 2 "1 

All these results above are general and make no presumption about weighting 

moment equalities such as (12). 

SPECIAL CHOICES OF WEIGHTING PARAMETERS 

Suppose that weighting w has free parameters that can be varied so as to 

make the mean locations of w and p coincide (see (24)); that is. 

"1 let  v, = — . 
1   UQ 

(The reason for the discrepancy with (12) is that we have set v^, = l but 

(32A) 

0 

have allowed ug i^ 1.) Inspection of (31) gives the following; 

then  b^ =0 and b2 = - ^ (^2 " ^) (^2 " 4 (32B; 

13 
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Conversely, (31) shows that requiring b-|_ = 0 forces the choice in (32A) for 

vp Thus equality of the first weighting moment v-^  of w with the first 

(normalized) moment of probability density function p implies (and is implied 

by) the vanishing of the first expansion coefficient bi. This may or may 

not be a useful choice, but, whether adopted or not, has no bearing on the 

equality of probability density function moments already demonstrated in (22). 

As a second special choice, suppose that weighting w has enough free 

parameters that we can vary, so as to make the mean locations and rms widths 

of w and p coincide (see (24)); that is 

^1 ^2 
let  v, = —  and  v^ = — . (33A) 

1  MQ       2  UQ 

(Again we have used VQ = 1.) Manipulation of (31) yields the following 

conclusion: 

then  bj_ = 0  and  b2 = 0 . (33B) 

Conversely, imposition of (33B) implies the results in (33A), as may be seen 

by reference to (31). (The apparent additional solution 

2 2   2 
Vp = VI/MQ = V-, would yield an impulse for w and is disallowed.) Thus 

equality of the first two weighting moments of w with the first two 

(normalized) moments of probability density function p implies (and is implied 

by) the vanishing of the first two expansion coefficients b-^  and b2. This 

common choice of weighting parameter values can be made if desired, but is not 

necessary (or recommended) for series approximations by orthonormal 

polynomials. The equality of probability density function moments in (22) 

will hold whether (33) is true or not. 

14 
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EXAMPLE OF DIVERGENT ERROR INTEGRAL FOR b^ = 0, bg = 0 

As a demonstration of what forcing expansion coefficients b, and bo 

equal to zero can do, consider probability density function 

2, 2> I    \ 2 u'^ exp(-U /o) )   j: n     ^     1      n> p(u) = y+1 /y+l\—  for u > 0    (Y > -1, 0) > 0; (34) 

with moments 

„r(^) 
(35) 

This class of probability density functions includes the one-sided Gaussian, 

Rayleigh, and Maxwell as special cases, for Y = 0, 1, 2, respectively. 

Consider also the Hermite weighting given in (1), which has moments 

(11) equal to 

:36) 

a = 0) ;37) 

2 2 
v„ = 1,  V, = a,  v„ = a +B  . I 

If we now insist on property (33B), then (33A) yields 

But the leading integral in minimum error Ej^ in (21) is convergent only if 

p (u)/w(u) decays sufficiently rapid for large u. We have from (34) and 

(1), the dominant behavior 

2 f   2  ^        ^ 
P (u)/w(u)oC expf--^ + —„ ) for large positive u ,       (38) 

V '^ 26^ ^ 
wherecC denotes proportionality, but disregards the exact scale factor and 

subdominant behavior. Thus the integral in (21) is convergent only if 

15 
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1<^= 2(Yn) -^h-^.    • (39) 

However, calculation of (39) reveals that this inequality is never satisfied 

for any value of y > -Ij the function on the right-hand side starts at 0 when 

Y = -1, and increases monotonically towards 1 as y > "*'°°> behaving like 

1 - 1/(4Y) in this limit. 

Thus expansion of probability density function (34) according to a 

Hermite weighting has an infinite error integral (21) (and perhaps a divergent 

series expansion) regardless of the values of y and u in the true probability 

density function, if we insist on expansion coefficients b, = bo = 0. Yet 

if we relax requirement (33B), and choose B according to (39) such that 

3 > u/2, the error integral in (21) is certainly finite, regardless of a. 

However, making the error integral in (21) finite is not the whole story, 

in so far as realizing useful approximations to the probability density 

function or cumulative distribution function. An example of probability 

density function (34) was taken with Y = 3, u = 1. When a and g were chosen 

according to (33) and (37) (giving e = .48 < .5 = (o/2), the expansion 

coefficients [b 1 initially decreased to approximately lE-3 at n = 40 terms, 

and then diverged; yet a plot of the approximate exceedance distribution 

function obtained by a Hermite expansion overlaid the exact answer down to the 

lE-16 level. On the other hand, when the weighting parameters in the Hermite 

expansion were chosen as* a = 0, B = .7 > .5 = u)/2, giving b-j^ :^ o and 

*This is example B in a later section 

16 
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bo 4-  0, the expansion coefficients |b } decreased to the lE-4 level at 

n = 70 before round-off error became dominant; despite this apparent 

improvement in coefficient level, the approximate exceedance distribution 

function overlaid a plot of the exact result down to the lE-10 probability 

level, which is several orders of magnitude worse than the above result. Thus 

emphasis on getting a convergent error integral in (21) may not always be 

desired. 

For Hermite weighting (1) and the class of probability density functions 

which decay as expl-u*^) as u > +=6, the error integral is always convergent 

if q > 2, and always divergent if q < 2. So an exponential probability 

density function, like u^ exp(-u/a)) for u > 0, always yields a divergent 

error integral when expanded in a Hermite series. 

For generalized Laguerre weighting (2), it is necessary to consider 

u = 0+ and u = "•"<» separately.  If probability density function p behaves like 

u"*" as u > 0+, then a finite error integral requires that we choose 

a < 1 + 2Y. Coupled with the finite area restriction on weighting w, a range 

of values of a is allowed, namely, -1 < a < 1 + Zy;  this range always exists 

since Y > -1 is necessary for the probability density function itself to have 

finite area. 

If also the probability density function behaves as exp(-u/a)) as u > +<» , 

then a finite error integral with generalized Laguerre weighting requires that 

we choose B > u)/2. So the range of choice of e is open on the large side, 

whereas that for a is a limited one, for this particular class of probability 

density functions. 

17 
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HERMITE EXPANSION 

In this section, we will deal exclusively with weighting (1), 

w(u)=|^(^) for all u   (3 > 0) , (40) 

where 

^(x) = (2ir) '" exp(-x^/2),  $(x) = J dt fli(t) . (41) 

This weighting has two free parameters, a and B, and moments 

-'A      2     r     ^ ■ • '"^   ^'x) =   dt (hit] 

2    2 
VQ = 1,   v, = a,   Vp = a +0  . (42) 

If vi and vp =""6 specified, the parameters must then satisfy a = vp 

2 1/2 e = (vp - vi)  . However, we shall keep a and e general and unspecified. 

PROPERTIES OF POLYNOMIALS AND EXPANSIONS 

The orthononnal polynomials associated with weighting (40) are the 

Hermite polynomials [5, 22.1.2 and 22.2.15] 

Q^(u) = He^^ii^) (nl)    for n > 0 . (43) 

The expansion coefficients are given by (20) as 

b^ = ("du p(u) Q^(u) = (nl)'^^^ c^  for n > 0 , (44) 

18 
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where we define 

c^ = Jdu p(u)   He^(-^)    forn>0. (45) 

The approximate probability density function then follows from (13) in the form 

N N 

p;(u).„(u) 2 \ ()„(") ■ i*^) S \ ^(V) •'      '«' 
n=0 n=0 

where we used (40), (43), (44), and defined 

,    (n:)^^^ a^ = b^ = (n:)~^^^ c^  for n > 0 . (47) 

These three different coefficients in (44)-(47) are introduced for convenience 

in further equation manipulations. Expansion coefficient b is the 

geometric mean of auxiliary coefficients a and c (with polarity). 

Expansion (46) is also called a Gram-Charlier series of type A [2, p. 222], 

[3, p. 156]. 

The approximate cumulative distribution function corresponding to (46) is 

P,(u) =  [dt p,(t) . ^ a„ I fi « (if) He„ (if) - 
n=0    -=* 

N      T N 

n=0   -'<* n=l 

i^    \   dx dM  He^(x) = a^5(T) - «i(T) ^ a^ ^Vl^^^ '  ^'^^^ 

where 

T = ^ (49) 

and we used (41) and [5, 22.11.8]. 
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The Hermite polynomials [HeJ satisfy the recurrence [5, 22.7.14] 

He (x) = X He _^(x) - (n-1) He^_2(x)  for n >^ 2 ,       (50) 

with starting values HeQ(x) = 1, He^{x)  =  x [5, 22,3.11]. The highest- 

order term in He|^(x) is x", with coefficient 1 [5, 22.1.2 and 22.3.11], 

The magnitude of the term multiplying b^^ in (46) has an envelope that decays 

approximately as n~   with n, regardless of argument u. This may be seen 

by using (47) and (49) to get 

a„ He„(T) . .^M'"'  He„(T)^ b„(„"*"2 e"")"'" (n/e)"'^ = b„ n""^ 

as n >+o6, for all T,   (50A) 

where we also used [5, 6.1,39 and 22.5.18] and [7, 8.22.8]. Here,oC denotes 

proportionality and we have taken the magnitude of the terms; the exact scale 

factor of proportionality will be presented in a later section where the 

errors of the approximations are estimated. So if b were to decay faster 

—3/4 than n ' , the probability density function series in (46) would converge 

absolutely. 

Conditions are better for the cumulative distribution function series in 

(48); namely, based on the above result, there follows (for the envelope) 

oC b n"^^^ n"^^^ = b^ n"^^^  as n > +<», for all T .  ^ (SOB) 

Thus if b decays faster than n~  , the cumulative distribution function 

series converges absolutely. Furthermore, if the leading error integral in 
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(21) is finite, the sum of b^ must be finite, meaning that b must decay 

faster than n"-'-'^. So we can conclude that if the error integral is finite, 

the Hermite series for the cumulative distribution function in (48) 

converges.  (Notice that this particular decay n"-'-'^ of b^ is not 

sufficiently fast to make the same conclusion about the Hermite series for the 

probability density function in (46).) The above are sufficient conditions on 

expansion coefficients {b^'^, and are not necessary. 

EXPANSION OF CHARACTERISTIC FUNCTION f 

The coefficients a^ and c^ were defined in (45) and (47). Then the sum 

i ^""^1      ir=n""=|   S^ ^" P("> "^n (¥) = 
n=0       n=0 n=0 

n=0 

.exp(-i„2-fw)f(f). (51) 

where f is the characteristic function, and where we used (45), [5, 22.5.19 

and 22.9.17], and (5). Letting w = sz, we have 

OO oo 

f (z) exp ^az - I &V^ = ^ a^ (ez)" = ^ ^ c^ (sz)" . 

n=0 n=0  ° 

Thus |a^|| and {cp^ are the coefficients in these power series expansions 

of the function f(z) exp(-az - 62^2/2), where f is the characteristic 

function corresponding to probability density function p, and a and B are 

arbitrary. A special case of (52) is given in [2, 17.6.10]. 

:52) 
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Collecting (46) and (52) together for comparison, and assuming that 

Pj^ > p as N > +°o,  we have 

n=0 

f(it) = exp^af-^6¥^ ^ a^(i0?)" . (53) 

^ n=0 

Thus expansion of probability density function p in an infinite Hermite series 

is equivalent to an expansion of a modified form of the characteristic 

function in a power series, according to (53). Equations (51)-(53) will serve 

as very convenient starting points for the derivation of several alternative 

recurrences for the expansion coefficients {a^^}. Notice that weighting 

parameters a and 3 are completely unrestricted in (52) and (53), except that 

0 > 0. 

An analogous result holds for N finite, but must be derived in a 

different fashion, because we no longer can use infinite sum [5, 22.9.17]. 

Define the Fourier transform of (46) as the N-th order approximation to the 

characteristic function: 

f^li?) = jdu exp(i?u) p^(u) = 

n=0 

N 

= ^ ^n P* exp(i5c. + ifBt) (i(t) He^(t) = 

n=0 

= exp(iotf)    ^   a^   CdtexpdBft)   (-^   <I>{t) 

n=0 ^ 
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= exp(iaf) ^ a^ (is?)"  dt exp(i35t) ^(t) = 

n=0        ^ 

= expAaf+ ^ B^{if)^y 2 a^ (ier)" , 

n=0 

(54) 

where we used [5, 22.11.8] in line 4, and repeated integration by parts in 

line 5. This result is the leading N terms of (53). As a by-product of this 

derivation, we have 

(dt exp(zt) <i){t)  He^(t) = exp/-| 
1 2\ n 

z  z (55) 

COEFFICIENTS RECURSIVELY VIA CUMULANTS 

We are now in a position to obtain some useful recursive relations for 

the expansion coefficients {a^ in (51)-(54). The first one is obtained by 

taking the h  of (51): 

Af(i)-l"-?«'=i' 
ao 

.n=0 
^n ^ 56) 

Then using (7) and identifying the right-hand side of (56) as a new power 

series, we have 

1  -V f^\ a     12 
T^ ^n ?  -7^-2^ = 

n=0 
h w n 

n 
(57) 

n=0 
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There follows immediately 

n  \  B 

2lT 

for n ^ 1,2 

for n = 1 

- 1)  for n = 2 

(58) 

But equality of the right-hand sides of (56) and (57) also requires that 

1 \«" - D 
exp h w' 

n 
n=0 n=0 

(59) 

It  is shown  in appendix A that a recursive solution to  (59)  for the {a 1   is 

given by 

n 

^n  = ^   2   ""^ \^      ^°" " ^ 1'      ^0 = ^^P^^^   • 
m=l 

:6o; 

Then eliminating ^h \ by means of (58) 

^n = n '''      "^V1^B-0V2^ 
X, m 

m=3 (m-1): B 
m n-m for n 2 1» 

aQ = expiX^), (61) 

where a a 0 for n < 0, and the sum is zero for n < 3. 

Now define normalized cumulants (excluding n=0) according to 

A 

(n-i): &' 
for n > 1 (62] 
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Then (51) becomes 

=n = ^ \[i- i) \-l *    (^- l) \-2  * TL^ m    n-m 
m=3 

for n > 1 , 

dQ = exp(>:j^) :63) 

This convolution is the desired recursion for expansion coefficients [a ] 

via cumulants. 

As particular cases, we have 

1L1 
a2 - 2 M-f-' ^ (64A) 

Parameters a and e (>0) are completely arbitrary in the above three equations, 

and \X j Q are the available cumulants of the probability density function 

under consideration. 

Observe that if we choose a = Xi = M and g =7-1^^  = R (see (24)-(25)), 

which is a very common choice, we have a-, = 0 and ao = 0; this is a 

special case of the general property (33) stated earlier. This special choice 

of a and e corresponds to choosing the mean location and rms width of Hermite 

weighting (40) identical to those same parameters of the given probability 

density function. There then also follows, in this special case. 

^3 ~ 3 -^3 ^0 '   ^4 " 4 ^ ^0 '   ^5 " 5 ^^^0 ' 

^n = n 

r      n-3 

^n ^0 ^ S ^ ''n-m 1 ^^"^ " > ^ when a = ;tp B =XZ^ •       (64B) 
m=3 
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COEFFICIENTS DIRECTLY VIA MOMENTS 

Before we begin this derivation, we present the following useful 

expansion [5, 22.9.17 and 22.5.19]: 

exp(-^y2 + xyj= ^   I^He^(x)y". : (65) 

n=0 

We now again refer to (51) and expand the terms as follows: 

n=0 

k=0 m=0 

where we utilized (65) and (6). Equating coefficients of w" on both sides 

of this equation, we have 

"; h He,, f- ?-) 
(n-k): 6 

'-- ^ VT ^d-i)        ":\n-,     fo-iO.       (67) 
k=0 

We now define, for convenience, the normalized Hermite polynomials 

He (x) =~ He (x)  for n > 0 , (68) 
n    n.  n — 

and the normalized moments 

y = -^—  for n > 0 . (69) 
"  n: s" 

(Notice the difference with the definition of the normalized cumulants (62).) 

Then (57) becomes 
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^n = 
k=0 

^^k(-f)Vk      forn>0, (70) 

which gives expansion coefficients [a^] directly in terms of the 

(normalized) moments of the given probability density function. The 

recurrence in (50) can be used to generate the Hermite factors needed in 

convolution (70). Parameters a and B (>0) of weighting (40) are arbitrary, 

As particular cases, we have 

M - «^^0 Uo - 2aui + (a -e ) u 

^0 = ^0'  ^1 =   i '  ""Z =        7~2 •       ^^^) 

These agree with (64) which utilized cumulants. If we make the special choice 

2 2 
of a = VIJ^/UQ and B = ^2/^0 ~ (^^W^^n^ ' ^'^®" a-, = 0 and ao = 0. 

An alternative more direct derivation of (57) is possible: from (47), 

(45), (B-3) in appendix B, and (3), 

^n-^S-^y^"P(")"^„(T^) = 
" n-k 

= ^[..P(.) S &^.(-0 
k=0 

n 

k=0 

rrHe   f-f) ^^^^     forn>0. (72) 
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COEFFICIENTS   RECURSIVELY  VIA MOMENTS 

Before we begin this derivation, we replace x > -ix, y > iy in  (65)  to get 

exp(| y2 + xyj =    ^   ^ He^(-ix)   (iy)" =    ^   ^ Hi^(x) y"  , (73) 

n=0 n=0 

where Hi (x) is a real n-th order modified Hermite polynomial in x defined by 

Hi^(x) = i" He^(-ix)  for n > 0 . (74) 

The recursion for these polynomials follows immediately from (50) as 

Hi^(x) = X Hi^_^(x) + (n-1) Hi^_2(^)  for n > 2 , (75) 

with starting values HiQ(x) = 1, Hi^(x) = x. The difference with (50) is 
2 

the polarity of the last term; thus for example, Hi2(x) = x + 1, 

3 2 3 Hi2(x) = x + 3x, versus He2(x) = x - 1, Heo(x) = x - 3x. 

We now rewrite (51) in the following form: 

m=0 

Expanding in power series by means of (6) and (73), 

n=0 k=0 m=0 

Equating coefficients of w , there follows 

^n 
n! e"   k=0 ^ 

h^\{f)'n-k      forn>0, (78) 

or 
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n n 

^n = 2 K{f)  Vk = ^n ^ ^ Kif)  Vk  ^0^ n > 0 ,      (79) 
k=0 k=l 

where we have used normalized moments (69), and defined the normalized 

modified Hermite polynomials 

Hi^(x) =^  Hi^(x)  for n > 0 . (80) 

Finally, the desired recursion for expansion coefficients j"a "l in terms of 

the moments follows as 

n 

%=^^n- 2 ^\(i)Vk  ^orn>0. (81) 
k=l .     . 

Parameters a and e (>0) are arbitrary in (81) and (69). 

SUMMARY 

The approximations to the probability density function and cumulative 

distribution function are given by (46) and (48), respectively, where a and g 

are arbitrary constants, except that B > 0. The functions i  and $ are defined 

in (41), while the Hermite polynomials {He^   are available via (5U), The 

expansion coefficients [a^^'^ are given by the three alternatives (63), (7U), 

(81), in terms of normalized cumulants (62), normalized moments (69), 

normalized Hermite polynomials (68), and normalized modified Hermite 

polynomials (80) and (74). Programs for all three alternative procedures for 

determining expansion coefficients [a^] are listed in an appendix. The 

basis for these relations is the characteristics function expansion in 

(51)-(53). 
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GENERALIZED LAGUERRE EXPANSION 

This section will treat weighting (2), namely, 

vv(u) = ^° exp(-u/3)  for ^j ^ 0    (ot > -1, B > 0). '    (82) 

This weighting is a special case of the three-parameter weighting 

(u-,)«exp(-^) 
—+T ^—^        for u > Y , (83) 
e" ^ r{an) 

which is the most general scaled linear shift of the generalized Laguerre 

weighting [5, 22.2.12] 

x" exp(-x)  for x > 0 . (84) 

We will consider only -y = 0 here. For a probability density function PQ(U) 

which is known to be nonzero only for u > UQ, we would consider the modified 

probability density function p(u) = PQ(U+UQ), because then 

p(u) 4  0 only for u > 0, and the simpler weighting (82) would be directly 

applicable. This procedure is equivalent to choosing Y = UQ in the 

three-parameter weighting (83) above, and requires knowledge of Ug. We 

presume that p(u) ^0 only for u > 0 henceforth in this section, and that any 

necessary shifting has already taken place. 

Weighting (82) has two free parameters, a and e, and moments 

V = (a+1) 8"  for n > 0 . (85) 
n     n        - 
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In particular, 

2 
"0 = 1,   v^ = (a+l)B,   V2 = {a+2)(a+l)B^ . (86) 

If vi and vp are specified, then the parameters must satisfy 

2 2 

a = —S-^ '    ^ = -^;— ' ^^^^ 
"2-^1 ^ 

However, we shall keep a and 3 general and unspecified except for the 

conditions in (82). 

PROPERTIES OF POLYNOMIALS AND EXPANSIONS 

The orthonormal polynomials associated with weighting (82) are the 

generalized Laguerre polynomials [5, 22.1.2 and 22.2.12] 

V"'-^'n'(?)(TVT);| ""■"^°- ">»■ 

The expansion coefficients are given by (20) as 

b^ = ] du p(u) Q^(u) = (T^JY)' ""n  ^o"^ " 2 0 '       (89) 

where we define 

:^ = Jdu p(u) I'^^^f)     for n >0 . 

(88) 

(90) 

0 

The approximate probability density function follows from (13) according to 
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N 
PM(U) = wlu) ^  b^ Q (u) = 

^ n=0 " " 

^ u"exp(-u/B) ^ ^ ^{o.)(t^     for u > 0 , 
S  r(a'^l)  n=0 

where we used (82), (88), (89), and defined 

an)V^ v'A 
^^«;^ya,=b, = (^jc,  forn>0 

:9i) 

,92) 

These three different coefficients in (89)-(92) are introduced for convenience 

in further equation manipulations. Expansion coefficient b is the 

geometric mean of auxiliary coefficients a and c (with polarity). 

The approximate cumulative distribution function corresponding to (91) is 

r N 
P[^(u)=] dt p^(t) = ^ 

0 rR 

,  f ,. t" exp(-t/g) |(a)^t\ 

TT^^ny n=0 
^n ^nf~'  for u > 0 , (93) 

where we define 

I (y) = fdx x* e"^ ^^n^^^^  for n > 0, y > 0 . (94) 

These quantities are evaluated in appendix C; when substituted in (93), they 

yield (95) 

p r,,^  (u/s)"""^ exp(-u/e) ^0 c n-«+?-y.^ + S ^|(«^i)/ii"^ 
^N^"^ = rT^iny pT I'^i^^'^^^'F     ;^ ~   n-i U; for u > 0, 

where ^F-j^ is the confluent hypergeometric function. 
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The generalized Laguerre polynomials |l-^°'''j satisfy the recurrence 

[5, 22.7.12] 

(ct-l+2n-x) LJ!|(X) - (a-l+n) LJ!^2^X)]  for n > 2 ,    (96) L^«)(x) =^ 

With starting values L^Q^X) = 1, L^J^x) = a+l-x [5, 22.4.7]. The highest 

order term in L^"^x) is (-x)"/n; [5, 22.1.2 and 22.3.9]; this is distinctly 

different from the coefficient 1 for the Hermite polynomials. Yet the 

envelope decay with n of the generalized Laguerre series for the probability 

density function and cumulative distribution function are identical to those 

of the Hermite series, for u > 0. To prove this, use (91) and (92) to get 

'/2 

n  n [&}        nUa+l)^)  n \&j^   n^ / 

a 1 1 
2   ' "4      ,      " "4 

n = b^n 

as n > +«,  for u > 0 ,    (97) 

where we also used [5, 6.1.39] and [7, 8.22.1]. Again, oC denotes 

proportionality with n only; the exact scale factor will be presented in a 

later section where the errors of the approximations are estimated. So if 

-3/4 
b^ decays faster than n   , the probability density function series in 

(91) converges absolutely. 

For the generalized Laguerre series of the cumulative distribution 

function in (95), we have, for the envelope of the general term, 
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n n  n-1 U/   n n V'^^K)       ""^ ^^Z n. 

a+1  1 

oCb 1 (n""/ (n-1) ^   ^ ~ b n"^^^ as n > +'^,      for u > 0 .    (98) 

-1/4 Thus if b decays faster than n   , (95) converges absolutely. And if 

the error integral (21) is finite, this property of the [b 1 is true. So if 

error integral (21) is finite, the generalized Laguerre series for the 

cumulative distribution function converges absolutely for u > 0; this is a 

sufficient, but not necessary, condition. 

For zero argument, the generalized Laguerre polynomials behave 

differently for large n. From [5, 22.4.7 and 6.1.39], 

^n^Q) =(n ) = -Tr-   fT^ny^^ " ^^°'- (9^) 

Then (97) and (98) are both replaced by b n**  as n > +<=*, However, for 

a > U, the probability density function in (91) is zero at u = 0 due to the 

u** term, so there is no need to perform the sum then. And the cumulative 

distribution function is always zero at u = U, again eliminating the need to 

evaluate the sum in (95). So the difference in behavior at u = 0 is of no 

consequence. 
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EXPANSION OF CHARACTERISTIC FUNCTION ft 

The coefficients a^ and c^ for the generalized Laguerre series were 

defined in   (90) and   (92).     Then the sum  • 
OS oo flo 

S    c    w"  =   2L   w"      du p(u)  L^=;^u/B) =     • 
n=0 n=0 ^0 " 
roo. op 

du p(u)  2   w"  L(°;^U/8)  =    fdu p(u)   (l-w)-«-l  expf-HWlV 
o n=0 " JQ \     1-wy 

=  (l-v.)-!   f(^) . .; (100) 

where f is the characteristic function, and where we used (90), [5, 22.9.15], 

and (5). Thus [c^] are the expansion coefficients of the right-hand side of 

(100) in powers of w. If we let w = -J^ , we have the expansion for the 

characteristic function 

-a-1 ^ „ /-ez^" 
f(z) = (l-3z)— ^c,(^j ,  ■ (101) 

corresponding to given probability density function p. Weighting parameters a 

and 0 are arbitrary in (100) and (101). 

Collecting (91) and (101) together for comparison, and assuming that 

P[yj > p as N > +00, we have, upon use of (92), 

p(.) . HIMEIZHM 1 a„ L(»Yf)     f„, „,0. 
6    '■ r(c.+l)    n.O    "      " ^^^ 

fdn = (i-^arr-i ±.„^(^" . ,103, 
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Thus, expansion of probability density function p in an infinite generalized 

Laguerre series is equivalent to an expansion of the corresponding 

characteristic function in the series of the particular form in (102). 

Equations (100)-(102) will serve as very convenient starting points for the 

derivation of several alternative recurrences for expansion coefficients 

^a 1. We reiterate that a and e are arbitrary in the above, except that 

a > -1, B > 0. 

An analogous result holds for N finite, but must be derived differently 

since we can no longer use infinite sum [5, 22.9.15]. Define the Fourier 

transform of (91) as the N-th order approximation to the characteristic 

function: 

fj^(if)  =   1 du exp(i|u)  Pj^(u)  = 

\A I-O  \  u    exp(-u/B)     -^    ,    |(ci)/'u 

0 B r(a+l)        n=0 

N 
^        ^    a^  [dtexp(iBft)  t" e"^  L^^^t)   . (103) 

n=0 

In  appendix 0,  it is shown that 

CH^ J"t t« o-t  |(«)rt^     r(a+l+n)   (-ico)" ,.     . 

Substitution in (103) then yields 

■i-   '""^'n 1-18?)" 4-, ("ien" 

where the last relation follows by use of (92). This result is the leading N 

terms of (102). 
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COEFFICIENTS RECURSIVELY VIA CUMULANTS 

We can now obtain some useful recursive relations for expansion 

coefficients \a^  and/or Ic^  in (100)-(105). We start by taking the ^ 

of (100): 

Jin 
M=0 

c w n :an)in(l-w) +> f(^). (106) 

Identify the left-hand side as a new power series, and use (7) and [5, 15.1.8] 

to yield 

h w" = ( 
n=0 

an) S. ^ w" ^ % ^X, (^]   - 

= (a+1) ^ -w +^  j— w  ^:± —r-w . 
n=l "    k=0 k: 3      m=0 '"' 

Equating coefficients of w", there follows hg =XQ,  while for n >_ I, 

h, = n(a-^l) \^ 7—iT- U^^OT 
k=0 ki e' 

1 
1\ 'fi* ± (-1)^ (Ox, 

107) 

108) 

where we used the normalized cumulants defined in (62) 

But since the left-hand sides of (106) and (107) are equal, we have 

n=0 Ln=0    J 

or via appendix A, the recurrence 

(109) 
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'^n = n n^ "^ ^ ^h-  f°'' " ^ ^^  S = explho) 

Finally, define 

d    = m h.       for m >  1 m In — 

:iio) 

111) 

fbr notational convenience and thereby obtain 

m 
d,= an>g    (-1)'C:)X,      form>l, 

1 n 

n      n    ^-fi ^m "^n^      ^°^ " ^ 1'      ^0 = ^^P^^^ (112) 

by means of (108) and (110), respectively. Equation (112) is a recursive 

relation for expansion coefficients ^c^   in terms of cumulants [x^l ^^d 

auxiliary variables {d^]. The [a^j are immediately available via (92). 

As particular cases, we have, employing (62), 

Cg =j   l(a+2)(an) - 2(a+2)^+^^ 
-0 • (113) 

Parameters a and g are completely arbitrary in all the above equations, except 

that a > -1 and B > 0, and (X^^Q are the available cumulants. 

Observe that if we 

■A 
let   a+1 = yi 

and B = 2^ 

2      9 

 ? " ~T 

^2*^0 - ^1  R^ 114) 
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then c-|^ = 0 and C2 = 0 (here we also used (8) and (25)); this is a special 

case of general property (33) stated earlier. Since the probability density 

function p(u) is nonzero only for u > 0, then 1^ > 0 and ^ > 0, giving 

allowable solutions to (114) in all cases. There then also follows, along 

with d, = do = 0 in this special case, the explicit results 

CQ = expO^),  Cj^ = 0,  C2 = 0, 

'^3 " o, -v3 ^^'^ ' "^ '^l^ ^0' 3: X2 

^  41 X2 

X? 

v2 
1   ils4-l2X,X^X^.X^Xl)c^^ 

c. =-^ (144;^ - 120X3;!:^^ + zo7^X2?^l -^5^1^ '^O' 
'5 5; X-l 

z 

•6 ~ r.  -vS 61% 2 
(40(30?[2 ^X\){t\ -X^X{fi\  ^ wfyiX ^      —     ifliii-ui>f      -r t     \ K I      _v      I    M      T    iii/i     r       + 

+ 3007^;^^^%^ - ^x^x^xX ^^5>^0 CQ, 

-y2       / 
:7 = —^- flOSOOTC^ + 1260X^ X^ - 126007^ x\ X^ - 1470)^ 'x\ X\ + C-7     = 

-2 

.2 ^   ^4 ^  ,,„„v ■v3 v2 ^ .nv ■v2 ^4      ^,v  v v5 420'X^ ^ ;^1 ■" 4200X^X^ X\ + 70;^;^^ Xj - 35^ ^ ^1 " 

-^iiS)(^x\r\^ ^iWrX-X-j-t^ z^. (115) 
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These relations have been confirmed by numerical comparison with (112). 

These results greatly extend those of [1, (129)-{131)], where the 

equivalent of our c^ is given (in terms of moments instead of cumulants, and 

with "i^ = 0), along with the comment that "the higher-order coefficients are 

so complicated that the whole value of this type of series seems to depend on 

the fact that the first term alone (CQ) is often a good approximation." We 

find, on the other hand, that not only can we avoid the special choice in 

(114) and the corresponding complicated special results in (115), but we can 

handle any a,B pair and get very high-order coefficients c , simply by using 

the recurrence in (112), which is easily programmed. The only thing we lose 

are explicit results of the type given in (115); however, the latter are so 

complicated that they are of limited utility anyway. 

COEFFICIENTS DIRECTLY VIA MOMENTS 

We will need the following expression [5, 22.3.9]: 

-k    /n+«> (-x)^ _  ^ fn\    (-x)^ 
'n  "     --n k^ (n-k^-n--  ,-g UJ T^^ 

Then  (92),   (90),  and  (3) yield,  for n > 0, 

ni        ,(a),   . n.; ^    /n+a-\    (-x)^ jr   [n\    (-x)^ ,„.. 

a    =    "ir^c    =    "^   f du p(u)   L^^^ii) = 
n      (ct+1)^    n      (a+1)^   J^       ^'  '      n  U; 

"^   '"^        ^       '   du p(u)   (-u/e)^=    ^ (-D^f")-^^^ .. (117) 
k=o VK; i« lik \ k=o        ^^^ (a+i)^ r 

It  is useful,   in this generalized  Laguerre series case,  to define an 

alternative set of normalized moments 
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y =      for n > 0 . (118) 
"  (ct+l) 3"      " 

(Although this seems to be very different from the earlier normalization in 

(59), (118) actually reduces to (69) for the a here equal to zero.) When 

(118) is utilized in (117), we have the desired expression for expansion 

coefficients ^a 1, directly in terms of (normalized) moments, in the 

surprisingly simple form 

n 

'n ~ ^^ ' "' ^k a^ = > (-1)'' ID  I  for n > 0 . (119) 

Parameters a and e in (118) are arbitrary, except that a > -1, B > 0. 

As particular cases, (117)-(119) yield 

^0 = ^0' ^1 = ^0 "llFr]!' ^2 = ^0 -J^^nj^" (cn)(cx+2)B2 '     ^^^^^ 

These agree with (113) which utilized cumulants.  If we make the special 

2        2 2 
choices of a+1 = M^I{u2\iQ -  u^) and s = (U2MO - P^)/ (W^UQ), 

then a-, = 0 and a2 = 0; this is a common approach to the approximation 

problem, but totally unnecessary. 

An alternative derivation of the direct moment relation (117) is 

possible: from (100), (5), and [5, 15.1.8], 
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n       ,,     ^-a-l     "^    1 /-w/s 
c    w    =    1-w ^    rr u,,   -TT: 

n=0    " k=0    ^-     ^ ^   ^-^ 

06 

k=0 Ir^^f^i-) -a-l-k 
k=0    ^-    "^   V   B/    ^^ 

k    ^     (a+l+k) 
m , m w 

Equating coefficients of w", we have, for n 2 0» 

r X_   / — \ n-K. _     [i 

k=0 S= ^^ k: ^v-3 

121) 

(122) 

which is equivalent to (117) 

COEFFICIENTS RECURSIVELY VIA MOMENTS 

The starting point for this case is the characteristic function expansion 

in (101): 

o<5 o<5 

f(z) =  <> c  (-sz)  (1-Bz)      = ^ C  (-BZ)   .._ 
rn=0 ^ m=D "^      k=0  ^ 

(a+l+m) 
k /. xk (sz)"  (123) 

by use of [5, 15.1.8]. Now expand the left-hand side of (123) in powers of z, 

according to (6), and equate the coefficients of z" to get, for n > 0, 

1     ^   ,     .m(°'^l^)n-m n-m   n ^ SnLll! ^""'^n 

Therefore 

(124) 

(a+1)  B    m=0 
n 

^  '  ^  'm  m=Q     ^ ' 
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by use of (92). Then using normalized moment definition (118), (125) can be 

expressed as 

n-1 
a. -  (-1)" n (-!)'« C) 

m=(J 
for n > 0 .        (126) 

This is a recursive relation for expansion coefficients [a ] in terms of 

(normalized) moments. The parameters a and B in (118) are arbitrary, except 

that a > -1, e > 0. 

SUMMARY 

The approximations to the probability density function and cumulative 

distribution function are given by (91) and (95), respectively, where a and e 

are arbitrary constants, except that o > -1, e > 0. The generalized Laguerre 

polynomials are available via (96). The expansion coefficients [a 1 are 

given by the three alternatives (112), (119), (126), in terms of normalized 

cumulants (62) and normalized moments (118); in the case of (112), the 

interrelationship between expansion coefficients [a^ and {c„] is given in 

(92). Programs for all three alternative procedures for determining the 

expansion coefficients [a^] are listed in an appendix. The basis for these 

relations is the characteristic function expansion in (100)-(102). 
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EXAMPLES OF HERMITE EXPANSION 

EXAMPLE A ■ 

The first example is one which can be handled analytically, and thereby 

furnishes checks on numerical procedures and results. Consider the Gaussian 

probability density function 

p(u) =^^f^   (03 > 0) (127A) 

with cumulative distribution function and characteristic function 

P(u) = 5 (-H^) , f (if) = exp ^fy  - I f2/) . (127B) 

The cumulants are 

% = 0, Xi = y,     Xg = co^,  /^ = °  for n > 3 , (128A) 

while the moments are most easily evaluated by the recurrence 

2 
u^ = Y v^_i  "^ (n-1) oj y^_2  for n 2 2, UQ = 1, u^ = y .        (128B) 

It is obvious in this Hermite expansion case that the best choice of 

weighting parameters would be a = Y, S = W, for then weighting w would match p 

perfectly and there would follow b^ = 0 for n 2 1- ^^  consider a mismatched 

choice of a and g to illustrate rapid decay of the expansion coefficients and 

some conditions on convergence. 

Expansion coefficient c^ follows from (45) and (127A) according to 

44 



TR 7377 

:^ = J^du p(u) ^e^l^  = e Jdx p(a+ex) He^( 

the last step via use of [5, 22.5.18] and [8, 7.374 10]. Then from (47), 

,      . n 

^„-M'''{^)     ^%t^\    forn^O. (130) 
-0) 

This equation is correct for all positive values of B and u. However, for 

e < 0), a more convenient form can be obtained by use of (74), if desired: 

b = (n:)"" r"V^ )  Hi AE^Y (131) 

where Hi is the modified Hermite polynomial. For e = u, a limit of (130) 

yields b^ = (n!)~^^^((Y-a)/6)". 

If B > 0), we can use the result in (50A) on (130) and obtain 

'   ' b^cc I ' g"  ]  n   asn>+«. (132) 

Since the quantity in parentheses is always less than 1 in this case of B > w, 

we have b > 0 as n > +«?. 

For B < (0, we use [7, theorem 8.22.7] and find now that 

(, , ^v n 

''" ~/     1  n   as n > +<*>, (133) 
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where A is the absolute value of the argument of He in (130). This 

quantity (133) tends to zero with n, regardless of A, when e > u)/V2l 

Combining with the result above, we can conclude that 

b„ > 0 as n > +03   for -^ < 3 < +°*. (134) 
n ^ 

Furthermore, b behaves as an n-th power, which is faster than n~  , 

thereby guaranteeing convergence of the probability density function and 

cumulative distribution function series, according to the discussion in (50A) 

et seq. On the other hand, |^b 1 diverges when 0 < 6 < u/Y?, as may be seen 

from (133). 

The error integral in (21) is, for Hermite weighting (40) and probability 

density function (127), 

do 4fel = —5^ expf-lpl^'l     ,f^<e. (135) 
^^   VzB^vy      Y? 

by use of [8, 3.323 2]; this integral is divergent if 6 < u/V?. Thus, for 

this particular example, the error integral and expansion coefficient 

sequence ^b3 converge or diverge together, depending on the condition 

6 \  u)/Y?. The choice of a is irrelevant in this case. 

A numerical example of sequence {b "J; for 

Y = 1.1, 0) = 2.3     a = 1.14, 3 = 2.34 (136) 
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is plotted in figure 1 on a logarithmic ordinate. Values of b less than 

lE-7 in absolute value are all plotted at the ±lE-7 line. The critical ratio 

2 r 
-u /S in (130) is .184 for this example, leading to rapid decay of 

expansion coefficients {b3. The three sets of expansion coefficients in 

figure 1 are labelled according to the shorthand notation 

RC: Recursively via Cumulants, 

DM: Directly   via Moments, 

RM: Recursively via Moments. (137) 

It is seen that the expansion coefficients determined recursively via 

cumulants, namely, the RC plot, decay rapidly and never encounter round-off 

error, whereas the DM and RM procedures both are subject to large round-off 

error for n > 70, as indicated by the large increasing oscillations. This 

example can be rather misleading, however, since all the cumulants (128A) of 

Gaussian probability density function (127A) are zero, except for 

X = Y, ?^ = to ; this leads to a '^'&v)j  special form of the RC procedure 

unique to the Gaussian case. 

In figure 2, the cumulative distribution function and exceedance 

distribution function, l-P(u), as determined by Hermite expansion (48) using 

N = 50 terms, are plotted. The exact result, (1278), overlapped these curves 

over the full range plotted. The three procedures, RC, DM, and RM, all 

yielded identical distributions in figure 2, as inspection of figure 1 

confirms, since the three sets of expansion coefficients are virtually the 

same for n < 50. Even though the three sets of expansion coefficients differ 

significantly for n > 50, the corresponding approximate probability density 
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functions and cumulative distribution functions for N = 70, say, would not be 

very different, because the relative differences in p and P are very small, 

somewhere in the lE-5 range; see figure 1 for n = 70, and recall that b^ = 1 

for this example. 

EXAMPLE B 

The probability density function of interest here is the one previously 

considered in (34) et seq.: 

Y     2 2 
p(u) = ^ "n^n/lnN^" ^  fo^ u > 0    (Y > -1, CO > 0) .        (138) 

This class of probability density functions includes, for Y = 0, 1, 2, 

respectively, the one-sided Gaussian, Rayleigh, and Maxwell as special cases. 

The characteristic function and cumulants are not easily determined directly 

for this function. However, the moments, as given already in (35), are 

readily evaluated via the simple recursion 

^n " ^n-2 ^ (r-l+n)  for n ^ 2,  vig = 1,  H]_ = u V+/ .       (139) '     m 
An example of the expansion coefficients for 

Y = 3, 0) = 1     a = 0, B = .7 (140) 

is depicted in figure 3. The values of b^^ for n = 0, 1, 2, 3 are 1, 1.90, 

2.18, 1.63, respectively, and lie above the top of the plotted region. The 
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coefficients obtained directly via moments, DM, decay to approximately lE-4 

near n = 70 and then encounter round-off error. The expansion coefficients 

corresponding to RC and RM are more noisy. The procedure used for RC was to 

determine the moments via (139), transform directly to cumulants according to 

(A-7), and then use (63). 

A plot of the distributions using N = 55 terms is given in figure 4; the 

results are the same for all three sets of expansion coefficients, as may be 

seen by reference to figure 3.  Furthermore, the exact cumulative distribution 

2      2 function, P(u) = 1 - (1+u ) exp(-u ) for u > 0, overlays these results 

except for the bow in the exceedance distribution function below lE-11 near 

u = 5.5. Values of the cumulative distribution function for u < 0 as 

determined by series (48) are not zero, although they should be for this 

example; the generalized Laguerre series would fit this example better, since 

it is nonzero only for positive arguments. 

EXAMPLE C 

Consider the class of Bessel-function probability density functions 

p(u) =JLU^ exp(-u^/u)^) Iy(»u)  for u > 0 , (141) 

which includes the Rice and generalized Q,^ distributions, for example. The 

n-th moment is [8, 5.631 1] 

J r(^T+H^  n+2h    /        1 o 9\ 

'^  ^^V^^rnn)"    I'H^ ' ''^''' '  "V ^0^ n 2 0 .      (142) n 
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with h = (Y+J+1)/2; in order for UQ to be finite, we must have h > 0. The 

■j^F-] function in (142) can be evaluated via recursion; this leads to a  • 

recursion for the moments (see appendix E). 

We consider here only the special case of the Rice probability density 

function, namely, 

J^= ^ exp (-\ Je^)  ,    Y = 1,  :f= 0 , (143) 

for which 

2 
01 

p(u) =-^ expf-^ - ^i^jlQ(&u)  for u > 0 . (144) 

The moments in (142) then reduce to 

"n=P(H "" 1^1 (?l^-!»'»')•       ' (1«> 

and can be easily determined by the recurrence presented in (E-5). The 

cumulative distribution function corresponding to (144) is the Q function [1] 

P(u) = 1 -qfe ,^)  for u > 0 ; (146) 

the characteristic function is given in [9, appendix A] as an infinite series, 

meaning that the cumulants cannot be determined directly, except via the 

moments. 

The particular example we consider here for the Hermite expansion is a 

sum of 8 independent random variables, each with Rice probability density 

function (144). For direct comparison with the exact results in [9], we also 

consider the normalized form of (144), namely b^    = 2. Furthermore, we limit 
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numerical consideration in this particular example to evaluation of the 

cumulative and exceedance distribution functions for e = 0, which corresponds 

physically to the false alarm probability for the sum of eight normalized 

envelopes of narrowband Gaussian noise (i.e., a Rayleigh probability density 

function for the individual random variables). 

For a = 4, e = 2.15, the expansion coefficients [bl are displayed in 

figure 5 for the RC, DM, and RM approaches. All the {b ] for 1 £ n <_ 20 are 

bigger than 1; the biggest is bg = 12.25. The fb^], for both moment 

approaches, have not been plotted for n > 60 because they continue to 

oscillate well beyond the ±1 limits, while the RC coefficients decay 

exponentially with n. Despite the fact that the moments were the initially 

determined quantities for this example, the RC method far outperforms the DM 

and Rf^ methods, as seen in figure 5. The reason for this is as follows: for 

the RC method, the procedure was to obtain moments via (145), cumulants via 

(A-7), cumulants of the sum of 8 independent random variables by simple 

scaling by a factor of 8, and then expansion coefficients via (53). For the 

DM and RM methods, the moments of the sum of 8 random variables were 

determined via [6, (14)] which progressively determined the moments of a sum 

of 2 random variables, then 3, 4,..., 8 in order, and then employed (70), 

This iterated procedure for moments requires more number-crunching and leads 

to considerably larger roundnDff error than the simple scaling required for 

the RC procedure. Thus it appears that when the random variable of interest 

is obtained as a sum of several independent random variables, the RC approach 

will be the prime candidate for expansion coefficient evaluation; this applies 

also if the individual random variables have different statistics, but remain 

independent. 
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The cumulative and exceedance distribution functions for this sum of 8 

normalized Rayleigh variates are plotted in figure 5, for the N = 140 

expansion coefficients of the RC procedure in figure 5.  In order to make a 

precise determination of the accuracy of this Hermite series approach, the 

false alarm probabilities were computed at the eight thresholds listed under . 

M = 8 in [9, table 1]. To the precision given in that table, the computed 

probabilities were exactly the specified values lE-m for m = 1(1)8. Thus, as 

anticipated by figure 5, very accurate evaluation of false alarm probabilities 

are possible by this series approach. 

A short search of values of the best weighting parameters a and e, to use 

with the DM approach, led to a = 5.84,' B = 2.28 and expansion coefficients 

b near lE-4 at n = 28, before round-off error became dominant. This is 

better than the result of DM in figure 5 for a = 4, e = 2.15. Evaluation of 

the false alarm probabilities at the thresholds in [9, table 1] gave 7 decimal 

accuracy at .1, and 4 decimal accuracy at lE-8. This is adequate for most 

purposes, but is not as good as the RC approach. 

EXAMPLE D 

In [4, appendix C], the characteristic function for shot noise with 

random amplitude and duration modulation, and arbitrary individual pulse 

shape, is derived. (This result is then specialized to elliptical pulses and 

Rayleigh amplitude modulation [4, (C-36)-(C-42)].) Also, the cumulants are 

extracted, with general result [4, (24)], where v is the average number of 

pulses/second, ^is the average length of the duration modulation, u,(n) is 
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the n-th moment of the amplitude modulation, and F(x) is the individual pulse 

shape of the shot noise. Thus shot noise is a case where the cumulants are 

directly capable of evaluation, whereas the moments must be found indirectly. 

For the special case of elliptical pulses and Rayleigh amplitude 

modulation, there follows for the cumulants [4, (29)]: 

r^  = vja^ 2^"  r^('|n)/r(n+2)  for n > 1,  ;^ = 0 . (147) 

These quantities are easily evaluated via recurrence 

Xi =^n-2 ^a "^/^""^^  for n > 3, ?^ = (l) vja^, ^ = | vja^ .  (148) 

This procedure was used in [4, appendix D] to obtain the probability density 

function and cumulative distribution function results given there. 

There is a nuance that arises in shot noise for pulse shapes of finite 

duration; see [4, pp. 40-42]. Namely, there is an impulse in the probability 

density function, at u = 0, of area 

PQ = exp[-vj(x2 - x^)] , (149) 

where (xi.Xo) is the non-zero extent of an unmodulated individual pulse. 

Since an impulse is very difficult to approximate by a finite series of 

continuous functions, the effect of this quantity should be subtracted from 

the statistics (moments or cumulants), and the continuous portion of the 

probability density function should be approximated. Similarly, the 
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corresponding step in the cumulative distribution function at the origin 

should be eliminated from the approximation procedure. 

This feature is easily incorporated if PQ is subtracted from the 

zero-th order moment [4, p. 42], The only undesireable side-effect of this 

manipulation is that the initially computed cumulants must be transformed to 

moments, then u„ corrected, and then all the new cumulants evaluated. This 

double transformation is necessary because the correction (subtraction) 

procedure can only be accomplished in the moment domain. Of course, when the 

DM or RM procedures are employed instead of RC, the last transformation to 

cumulants is unnecessary; this was, in fact, the procedure used in [4, p. 60]. 

When the individual pulse F(x) has infinite duration, as for an 

exponential or Gaussian waveform, then Xg - x-j^ is infinite and PQ in 

(149) is zero.  In that case, the considerations in the last two paragraphs 

can be disregarded, and the cumulants generated via (148) used as is.  It is 

then very likely that even better accuracy in the expansion coefficients will 

be achieved than for this current example. 

For overlap factor [4, p. 43] 

K"^ = vl(x2 - x^) = 6.2,  PQ = exp(-6.2) = .00203,  a = 1 ,  (150) 

and for weighting parameters a = 6.1, B = 4.3, the expansion coefficients 

Pp] are displayed in figure 7 for the three recursive procedures. The Rf^ 

results are considerably poorer than the RC and DM coefficients, which are 
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comparable for n < 65. However, even here, the coefficients have only decayed 

to the lE-3 level, which may not be sufficiently small for accurate results. 

The distributions using N = 55 terms and the RC expansion coefficients 

are given in figure 8. Although the actual cumulative distribution function 

is zero for u < 0, the approximation oscillated around zero, reaching a 

positive peak of value .22E-3 at u = -2. Similarly, significant wiggles 

develop in the exceedance distribution function below the lE-4 level. The 

reason for the inadequacy of these Hermite expansions near u = 0 is the abrupt 

zero behavior of the true probability density function for negative arguments, 

a feature inherently difficult to approximate by means of smooth continuous 

functions. The error of the approximations in figure 8 is estimated in a 

later section and superposed on the plot, for ease of ascertaining the 

reliability of the curves. The corresponding approximations for the 

generalized Laguerre series are better for this type of probability density 

function, as will be demonstrated in the next section. 

The approximate probability density function for this example, again with 

N = 65 terms, is given in figure 9 on a linear ordinate.  It reaches a 

negative peak of -8£-4, and crosses the u = 0 axis with value .004; both of 

these values should be zero, and will be for the generalized Laguerre series. 

To see how the approximate probability density function behaves for larger 

arguments, the logarithmic plot in figure 10 is used, i^iggles develop near 

the lE-4 level and become large enough that negative values of the density are 

yielded near u = 28 and 31.  It will be worthwhile to compare this Hermite 

series with the generalized Laguerre series to be presented in the next 

section. The estimated error associated with figure 10 is developed in a 

later section. 
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EXAMPLES OF GENERALIZED LAGUERRE EXPANSION 

EXAMPLE E 

As with the earlier Hermite expansions, the first generalized Laguerre 

example here is one that can be evaluated analytically, for purposes of 

checking numerical procedures and results. Namely consider the Chi-square 

probability density function of ZIY"*"!) degrees of freedom (which need not be 

integer): ,   . 

P(u) = '\fP}^'^^ {,>-!,.> 0). (151) 

All probability density functions and approximations are limited to u > 0 in 

this section, since they are zero for u < 0; this restriction will be presumed 

in the remainder of the presentation. 

The exceedance distribution function is related to the incomplete Gamma 

function [5, 6.5.3]: 

1 - P(U) =  1 dt p(t) =r(Y + l, u/a.)/r(Y+l) . (152) 

The characteristic function follows from (151) as 

f(i|) = (1 - ifo))"^"^ , (153) 

with cumulants 

X^ = ik-l) I   (yn)  J"     for k 2 1, ^ = 0 ,   . (154) 

and moments 

^k = ^^""-^^k '^^  for k 2 0 . (155) 
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Thus either set of statistics can be used as a starting position. The error 

integral in (21) is finite if 

-1 < a < 2Y + 1   and   B > u/2 . (156) 

We will find the expansion coefficients by means of the characteristic 

function expansion (100), developed earlier for the generalized Laguerre 

series. Specifically, we utilize the power series expansion 

o°_ [        ) ^     ( +1)     .k  , 
w 

m=0 k=0 
w^ , (157) 

where we used (153) and [5, 15.1.8] twice. The coefficient of a general term 

w'^' is then immediately given by the closed form 

c.. = > —m—  /■, „\ I i^r-) for n > 0 . (158) 'n   ^       m\ (n-fn) 

Alternative expressions for the expansion coefficients are 

(Y^D, 

^n- 

(ci+1)    / V 
-^F(-„,.n;,n;^) for n > 0 ,    (159) 

obtained by means of [5, 15.1.1, 15.3.5, 15.3.7] respectively. In fact, the 

last result can be obtained directly by using [8, 7.414 7] on (90) and (151): 
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oO 

However, the latter two results in (159) are not numerically stable, whereas 

(158) and the first line of (159) are stable for large n, without encountering 

round-off error. 

Some special cases of (158) are as follows: 

if a = Y, then c = r-^ [^)     ; 
n    n!  \ e / 

(a-Y), 
if S = 0), then c = —-n— ; 

11 II e 

if a = Y cind 6 = u, then c = 6 Q . (161) 

The last case is to be expected, since the weighting exactly matches the 

probability density function (151) then. 

A numerical example of sequence [b "l for 

Y = 1.1,   00 = 2.3       a = 1.105,    e = 2.1 (152) 

is shown in figure 11, using the three recursive procedures developed earlier 

for the generalized Laguerre series in (112), (119), (126).  In addition, 

exact result (158) is plotted for comparison. The expansion coefficients have 

a rapidly decaying transient for n < 10, and then a decay approximately 

-3/2 proportional to n   for large n. The abrupt change of character at n = 5 

does not signify the onset of round-off error; rather, the latter is indicated 
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by an erratic behavior, typically increasing exponentially with n (linear 

growth on a logarithmic ordinate). 

A different plotting strategy will be adopted henceforth for the 

expansion coefficients [bp], in order not to clutter the diagrams with large 

oscillations as in figures 1, 3, 5, 7. Specifically, when the expansion 

coefficient b first exceeds the ±1 limits, the remainder of sequence [b ] 

will not be plotted, since this is a region of large round-off error. Thus, 

although the RM curve in figure 11 returns to the ±1 limits briefly at 

n = 52,53, these values are not displayed. 

Round-off error for the RC procedure does not become as significant as 

for the two moment approaches until n has increased by almost 10, for this 

example in figure 11.  In fact, the expansion coefficients for the RC 

procedure overlap the exact values until n = 40. The corresponding 

approximate distributions, using N = 40 terms in expansion (95) as determined 

by RC, are plotted in figure 12. The exact result (152) overlays these 

results over the entire range plotted. 

EXAMPLE F 

The following probability density function corresponds to a noncentral 

Chi-square variate of 2v degrees of freedom: 

r 

p(u) =|exp^^j(^^)''  I^_^(dyT?)     (v > 0) ;     (163) 
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d is the noncentrality parameter, and 2v need not be integer. The 

characteristic function is [8, 6.631 4] 

f(if) = (l-iZf)-^ exp(|l|^) , (164) 

and is the same as the one considered in [10, (50) et seq.]. The exceedance 

distribution function is the generalized Q-function: 

1 - P(u) = I dt ^ exp (-^   (^y~'^  I^_i (dVD = 

= f dx X exp^^-^j^j]"  I^_^(dx) = Q^(d,YlD . (155) 

By expanding the i'n of (154) in a power series in if, the cumulants 

follow as 

:i65) ^^ = 2"(n-l)i A + -| d^ n^  for n > 1,  ^^ = 0  . 

And the moments are obtained from (153) as 

^n = ^" ^"^n iFi(-n;^''-d^/2) = 

= 2" n: i^'''^^   (-d^/2)  for n > 0 , (167) 

by use of [8, 5.631 1] and [5, 13.5.9]. Both (156) and (157) lend themselves 

to simple recurrences which involve only positive quantities; thus the 

starting statistics can be quickly and accurately evaluated. 

The numerical example we consider here will be compared with the exact 

results in [10, figure 11], namely, 
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V = 2.7,    d = 3        a = 1.7,    g = 5.5 . (168) 

Since the probability density function in (153) behaves as u^~ as u >■ 0+, 

it is reasonable to choose weighting parameter a in (82) as v-1, as indicated 

in (158). And since (163) behaves as exp(-u/2) as u > +o6, we must choose 

8 > 1 in order that the error integral in (21) is finite. The particular 

values in (158) approximately minimize the sum of [b L in (21). 

The expansion coefficients [h^  as determined by the three available 

recursive procedures are displayed in figure 13. The RC coefficients decrease 

to values less than lE-10 near n = 50, before round-off error becomes 

significant. The two moment approaches deteriorate near n = 30, which is 

markedly poorer than the cumulant approach. The distributions, as determined 

by N = 50 terms of the RC approach, are given in figure 14, and agree with the 

d = 3 curve of [10, figure 11]. When the approximate probability density 

function for N = 50 was compared with exact result (163), 10 decimals of 

agreement were obtained; this is due to the ability to get ^ery  small ?b 1 

in figure 13 via the RC method. 

EXAMPLE G 

This example is the Rice probability density function given in (144), 

with moments (145) and cumulative distribution function (145). The starting 

statistics are the moments as determined by recurrence (E-5)-(E-5). 
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The particular numerical case of interest is 

e = 3,    0)2 = 2       a = 1,    6=1. (169) 

The values of a and e were found by the usual trial and error search procedure 

of observing plots of expansion coefficients {b ], looking for rapid decay 

and small round-off error; results for this example are displayed in figure 

15. The RM procedure deteriorates rapidly at n = 30, whereas DM and RC are 

useable up to n = 55 and 65 approximately. 

The cumulative and exceedance distribution functions for N = 65 terms of 

the RC procedure are plotted in figure 16, along with exact result (146). The 

approximate exceedance distribution function overlaps the exact one until 

slightly below the probability level lE-4, which corresponds to the level of 

reliability of b in figure 15 at n = 65. Then the exceedance distribution 

function makes a positive (upward) turn below lE-6, which is impossible for a 

physical density function which must remain positive; thus the approximation 

deteriorates rapidly for u > 7. 

EXAMPLE H 

This is a follow-on to the previous example, in that we consider a sum of 

8 Rice variates, each with the statistics in (169). The expansion 

coefficients for 

e = 3,    0)2 = 2       a = 26,    s = 1 (170) 

69 



TR 7377 

+-> 
c 

o 

<+- 
<+- 

(U 
o 

c 
o 

M 
c 
rt) 
Q. 
X 

loJ 

.01 

IE-3 

IE-4 

lE-5 

lE-6 

±lE-7 

-lE-6 

-lE-5 

-lE-4 

-IE-3 

-.01 

-.1 

-1 

r f^ 
■f—« 

1 \ ^_^ 

/ RC 

n 

\ L. /       \            ' 

V- .Jf^^L._____ 
\ 

, 1 <y \ "\j\ 
, 

V/ Rr\ 
■^ \ 

10 20 80 90 30        40        50        60        70 
n,   sequence   number 

Figure   15.   Generalized   Laguerre;   Example   G 

100 

J3 

o 

CL 

lE-10 
5 6 7 

u ,   thresho1d 

Figure 16. Distributions for Example G 

70 



TR 7377 

are displayed in figure 17. Whereas both DM and RM are useless beyond n = 25, 

the expansion coefficients determined by RC decay down to the lE-10 level at 

n sr 150 before round-off error becomes significant. The corresponding 

distribution's in figure 18, using N = 143 terms of the expansion via RC, 

reveal accurate results down to the lE-12 level of probability, except for a 

slight flare in the exceedance distribution function below lE-11. 

We also checked the example of the sum of 8 normalized Rayleigh variates 

considered earlier via a Hermite series in example C. For a = 10, g = .9, the 

expansion coefficients {b } decayed to the lE-U level at n = 100 for the RC 

approach and agreed with the false alarm probabilities calculated exactly in 

[9, table 1] for M = 8. By contrast, the DM expansion coefficients were 

subject to significant round-off error by the time n reached 30, and were 

useless for small probability calculations. 

EXAMPLE I 

We return to the shot noise process previously considered via a Hermite 

series in example D. The equations and discussions there should be reviewed, 

since they are directly relevant to the generalized Laguerre expansion here. 

For the choice of parameters in (150), the selection of generalized Laguerre 

weighting parameters 

a = .74,    6 = 2.1 (171) 

leads to the expansion coefficients plotted in figure 19. The DM and RC 

results agree to n = 32, and then begin to diverge from each other. By way of 
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contrast with the Hertnite expansion coefficients in figure 7, where values in 

the lE-3 range were achieved, values in the lE-5 range can be obtained here 

for the generalized Laguerre expansion, for n in the rnid-30s. The DM result 

was previously given in [4, figure D-1]. 

The distributions for N = 32 terms of the RC procedure are plotted in 

figure 20. This result is considerably better than the Hermite expansion in 

figure 8; instead of the wiggles which developed at lE-4 in figure 8, the 

curve in figure 20 is smooth down to the lE-8 probability level, and then 

develops a bump. Also, the cumulative distribution function is accurate at 

u = 0, where it takes on the value PQ = .002 given in (150), and is zero for 

u < 0. This cumulative distribution function was previously given in 

[4, figure 8]. 

The probability density function for N = 32 terms of the RC procedure is 

given in figure 21; this result was previously given in [4, figure 9].  It is 

significantly better near the origin than the Hermite approximation given 

earlier in figure 9, which developed negative values for u < 0. In order to 

see what the probability density function does for larger u values, the same 

probability density function is plotted on a logarithmic ordinate in figure 

22.  It is accurate to the lE-9 level but then develops a hook that is 

incorrect; however, this approximation remains positive even at this very low 

value of the density, whereas the corresponding result via a Hermite expansion 

in figure 10 developed negative values. The estimated errors in figures 20 

and 22 are evaluated in a later section. 
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EXAMPLE J 

This last example is for probability density function 

p{u) ="2 exp ('-u j     for u > 0 , (172) 

for which the moments are 

Un = {2n+l)!  . (173) 

The characteristic function and cumulants are not available in any convenient 

analytic form. 

This is a particularly difficult example, since the characteristic 

function expansion in (6) has a zero radius of convergence; thus the moments 

do not uniquely determine the probability density function or cumulative 

distribution function. Also, the error integral in (21) is always infinite; 

in fact, regardless of the choice of weighting parameters a and e used in the 

generalized Laguerre series, the expansion coefficients ^b "^  always 

diverged. Nevertheless, a search of parameter values led to a pair of 

selections, namely, 

a = -.35,    e = 30, (174) 

for which the expansion coefficients had an initial decay to the lE-2 level 

before divergence took over; see figure 23.  In fact, the identical same 

results were obtained for all three methods, RC, DM, RI^; this is probably due 

to the fact that divergence of ^b^^] dominated before round-off error became 

significant. 
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The distributions are plotted in figure 24 for N = 15 terms of the 

generalized Laguerre series. Comparison with the exact exceedance 

distribution function 

1 - P{u) = (1 + u^^^) exp (-u^^^)  for u > 0 (175) 

reveals that the approximation is decent down to the .01 probability level, 

but then oscillates more and more violently as u increases. Thus even in this 

non-unique example, a limited-quality approximation is achieved by the 

generalized Laguerre series; this example confirms the comment in [3, p. 167] 

that, even for a divergent series, a limited number of expansion coefficients 

often gives a satisfactory approximation. 

The exact and approximate probability density functions are plotted on a 

linear ordinate in figure 25, and on a logarithmic ordinate in figure 26, 

using N = 15 terms of the generalized Laguerre series, when the expansion 

coefficients were determined by the DM method. The approximate probability 

density function is negative for 150 < u < 190, around the lE-6 level. The 

estimated errors of the approximations in figures 24 and 25 will be developed 

in the next section. 
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ESTIMATED ERRORS OF APPROXIMATIONS 

When the calculations of the approximate cumulative or exceedance 

distribution functions or the corresponding probability density function are 

made, it would be very useful to have a rough estimate of their reliability. 

One way, as discussed in the previous sections, is to look for nonsmooth or 

anomalous behavior on the tails of the functions. Here, we will develop a 

more quantitative estimate of the error and superpose it on some of the 

previous examples, for confirmation. 

Both the Hermite and generalized Laguerre orthonormal polynomials 

oscillate with n and decay slowly. The same general behavior is true of 

expansion coefficients [b_]. This leads to summations for the various 

functions with terms that also oscillate and decay. A rough estimate of the 

error is afforded by the envelope of these oscillations, evaluated at the 

first neglected term of the summation. This procedure will be pursued for 

both types of expansions; how useful it is will be indicated by numerical 

examples. 

HERMITE EXPANSION 

The following result for the envelope of the Hermite polynomial is 

obtained from [5, 5.1.39 and 22.5.18] and [7, 8.22.8]: 

Env|(n:) ' He^(x)J - exp(x^/4) (^j       as n > +=». (175) 

Also, from (45) and (47), the n-th term of the approximate probability density 

function is 
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(177) 

Then the magnitude of the error of the probability density function 

approximation, if the n-th term is the first one neglected, is roughly 

1 
E (u;p)= „ n       e *M   Envfb„]E„v[(„;)"'\e„(^}]. 

[^ 
-1-1 

exp (u-g)' 

46^ 

■«/4 
Envfb^] as n > +«6, (178) 

Here we used (175). 

As for the cumulative distribution function, we have from (47)-(49), the 

n-th term of the approximation as 

r'A 
_,(Y)b, CnO  He,.,(V). (179) 

The magnitude of the error for the cumulative and exceedance distribution 

functions, if the n-th term is the first one neglected, is then defined as 

u-a 
E^(u;P) ^i  (^j Env ^bj Env j(n:)   He^_^ 

'A u-a 
I 

[.'\V.J exp (u-g)' 

43^ 

■3/4 
Env [b^] as n > +'^. (180) 

Again, (176) was of crucial importance in getting this result. 
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Since the above estimates are asymptotic in n, they will be most reliable 

for n large; their use for small n could be very misleading. The way to use 

these error estimates for the density and distribution approximations is as 

follows. First, a search on a and &,  to find the fastest decaying expansion 

coefficients [bJ, is conducted. The weighting parameter values, a and B, 

and the corresponding envelope value of the expansion coefficients {b | at 

the point, n, where round-off error becomes dominant, are then noted. (For 

example, for figure 7, we observe that Envlbl ii? 2E-3 at n = 65, when 

o = 6.1, B = 4.3; see example D.) Then (178) and (180) can be computed and 

plotted in the ranges of u of interest. 

An example of this procedure for the shot noise process in example D is 

given in figures 27 and 28.  In particular, the approximate results are 

repeated from figures 8 and 10, and error measures (180) and (178), 

respectively, are superposed as dashed lines, each on the appropriate figure. 

Just where the approximations develop large wiggles, the errors are of 

comparable magnitude, indicating unreliable estimates there. 

It should be observed from these figures (or from (178) and (180)) that 

the absolute error is maximum at u = a, but that the relative error is a 

minimum in that neighborhood. Also, although the absolute error decays with 

u, the correct answer decays faster, leading to an increasing relative error, 

which eventually becomes so excessive in the tails of the various functions 

that the approximations are useless. 
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GENERALIZED LAGUERRE EXPANSION .   • 

The details for the generalized Laguerre series are very similar to those 

above and so will be abbreviated. The envelope of the generalized Laguerre 

polynomial is [7, 8.22.1] . 

_1  £   _a _ _1  _a _ _1 

Env[L^"hx)] ~ IT 2 e^ X ^  ^ n^ ^      as n > +«>,  for x > 0 .   (181) 

From (91) and (92), the n-th term of the approximate probability density, 

function is 

u" exp(Hj/8) ,  / n! \  .(a) M ,,^„. 

Then the magnitude of the error of the probability density function 

approximation is, for u > 0, 

E (u;p)= ^\f^^^l^)       Env {b 1 Envf/U^Y'^^"^ fj")] = 

ur(«-i)B^ 
'A - - - 2  4   / „\ -1/4 

(183) (?)    ^^p(-2i)"   Envfb^Vs" >"«'. 

where we used [5, 6.1.47] and (181). This quantity peaks at u = 8(0-5-). 

With regards to the cumulative distribution function, the n-th term of 

the approximation is, from (95) and (92), 
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u"""^   exp(-u/B)      ,       1    /LjliNf^  I (a+l)   M (^OA) 

3«^irun)    '"" F^J '-1 l^/' ^'''^ 
Then the magnitude of the distribution error, for both the cumulative and the 

exceedance distribution functions, is roughly 

^n(^^P)^ fef" "^^^"^ "^{" feT^^n- (^] = 

~[^r(a+i| 
1    f^i _3 

upon use of (181). This quantity reaches its peak at u = e(a+i). 

An application of these results to the shot noise process, which was 

re-investigated in example I via the generalized Laguerre series, is given in 

figures 29 and 30. Specifically, the approximate results from figures 20 and 

22 have been repeated, and error measures (185) and (183), respectively, 

superposed as dashed lines. They confirm the earlier observations that the 

distribution and density approximations are reliable until the anomalous 

behavior on the tails manifests itself. 

The difficult example J is considered in figures 31 and 32. Since the 

expansion coefficient sequence {b^} in figure 23 diverged for large n, the 

selection of n = 15, as used in figures 24-26, is not the large value needed 

to justify the use of (183) and (185). Thus, the dashed curves on figures 31 

and 32 must be considered only as ball-park estimates; in general, the 

approximate error appears to be too conservative in these two figures. 
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Finally, the Rice variate of example G is re-considered in figure 33.    We 

took Env{b^^:» 3E-4 at n = 55,  by extrapolating  in figure  15 from smaller n, 

since round-off error is becoming significant by this value.    It verifies the 

reliability of the approximation in figure 33 for u  > 7. un 

Although all the examples in this report have the capability of 

evaluating either the moments or the cumulants via recursion, this is by no 

means necessary. Any method whatsoever of accurately calculating the starting 

statistics, be they moments or cumulants, is acceptable. For example, if a 

random variable with known probability density function q is passed through a 

complicated nonlinearity g, the moments of the output are given by 

% = 
du g"(u) q(u) . (186) 

These quantities could be evaluated for 0 £ n <_ N by brute-force numerical 

procedures if necessary. The limit value N wi11 depend on the accuracy with 

which g and q can be evaluated; if g{u) 2 0 for all u, these integrals can be 

accomplished to a high degree of accuracy, thereby allowing large values of N 

to be employed. 
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DISCUSSION 

Several alternative methods have been presented for obtaining either 

Hermite or generalized Laguerre series expansions of probability density 

functions or cumulative and exceedance distribution functions, by means of 

recursive relations involving either moments or cumulants. Furthermore, 

estimates of the errors of the approximations are furnished so that the 

reliability can be assessed. Comparisons between approximations obtained by 

either the Hermite or the generalized Laguerre series afford an assessment of 

the accuracy of each; also, the availability of three alternative recursive 

procedures for the expansion coefficients allows for selection of the best 

method and results, and determination of the amount of round-off error. 

The key feature to this approach is the rapid calculation and observation 

of the orthonormal expansion coefficients |b 1 for each particular guess of 

weighting parameters a and g. A trial and error procedure is suggested for 

determining a and 8 values that yield the set of fastest-decaying expansion 

coefficients. From observation of the expansion coefficients, the number of 

terms to retain in the series expansions is ascertained, being sure to avoid 

the effects of round-off error which dominates the calculated expansion 

coefficients ^b 1 for large n. Since the amount and location of round-off 

error on the plot of expansion coefficients also depends on a and e, a 

judicious search may be required to find acceptable weighting parameter 

values. Of course, a computer with a larger number of significant digits 

would greatly alleviate this drawback; the particular computer used for all 

the calculations reported here is the Hewlett-Packard 9000 Model 520 which 
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devotes 52 bits (15.65 decimal digits) to the mantissa and 11 bits to the 

exponent. Failure of the technique is indicated by divergence of the 

expansion coefficient sequence ^b^"]. 

Programs for the shot noise process considered in examples D and I are 

presented in appendix F, Times of execution are as follows. For the Hermite 

series, the 80 cumulants or 80 moments required as input for figure 7 took .7 

or .35 seconds, respectively. The calculation, plotting, and display of the 

80 expansion coefficients in figure 7 took 1.6 seconds via the RC approach and 

1.75 seconds via the two moment approaches. The computation and display of 

the 100-point plots of the cumulative distribution function in figure 8 and 

the probability density function in figure 9, each using 65 terms in the 

series expansion, took 1.1 and .95 seconds, respectively. 

For the generalized Laguerre series, the 70 cumulants or 70 moments 

required as input for figure 19 took .54 seconds or .28 seconds, 

respectively. The calculation and display of the 70 expansion coefficients in 

figure 19 took 1.8 seconds via the RC approach and 1.5 seconds via the two 

moment approaches. The computation and display of the 100-point plots of the 

cumulative distribution function in figure 20 and the probability density 

function in figure 21 took 1.1 and .7 seconds, respectively. These execution 

times are short enough to allow a human observer to conduct a rapid 

trial-and-error search of a,B space, determine adequate parameter values, and 

assess their accuracy. 

Alternative exact procedures for determination of cumulative and 

exceedance distribution functions via characteristic functions have been 

presented in [9, 10, 11]. Those methods generally have the potential for 
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greater accuracy,  are less subject to round-off-error,  and would be preferred 

if possible.    However,  analysis of systems with nonlinearities and memory 

sometimes precludes or greatly hinders their application;  in such cases, the 

current approach is a very good candidate for consideration.  , 

The two weightings in (1)  and  (2), namely the Hermite and generalized 

Laguerre,  have been investigated rather intensively here,  because so many 

properties and recursions are available for the corresponding  (orthonormal) 

polynomials.    These properties have been utilized to derive simple recursive 

relations for the expansion coefficients and density and distribution 

functions, thereby realizing quick efficient procedures for numerical 

evaluation and observation. 

It would be extremely useful  to be able to extend these results to the 

weighting 

0       0 
u" exp(-u  /e  ) for u  > 0, (187) 

since this class of probability density functions is often encountered in 

nonlinear systems with Gaussian  inputs.    However,  there are several  pivotal 

recursive relations for the corresponding orthonormal polynomials that would 

be needed,  and it  is questionable if a fast procedure could be devised without 

them.    Also,  it is unknown if recursive procedures for the expansion 

coefficients  in terms of moments or cumulants could  be derived,  as was done 

here for the Hermite and generalized Laguerre weightings.    This is a topic 

worthy of further investigation. 
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APPENDIX A. COEFFICIENT RECURSION FOR EXPONENTIAL OF POWER SERIES 

cso 

Suppose power series ^ h^ z" converges for some Izl > 0, and we 
n=0 " 

exponentiate it, getting a new power series 
60 r oO     -A 

2 g, z" = exp Z \zH. 
n=0 ^n=0     -> 

Then the lowest order coefficient is 

(A-1) 

QQ = exp(hQ) (A-2) 

while for k > 1, we have 

9k 
1 fdV 

oO 

exp )^    h^ z 
n=0 

1 f d^k-M ^   ,  n-l   \ n h z   exp ] kl Idz 

z=0 

.n=l Ln=0 
hn^' 

= ^i(V)(^TK-n^"-ao(# P= 

k-1 

z=0 

-P 
■ o£> 

exp-* h z 
'n=0 

= irf :| (V) ^P'^^' Vi^^-^-P)- 3k-i-p = 
p 

k-1 
(p+1) h ,, g. ,  = 7- 
^^ ' p+1 ^k-l-p  k 

1 
k fTT ''' ^' "p+1 ^k-l-p " k ^   "" "^m ^k^n • p=U       "^      '^    m=l 

Thus we have the recursion for coefficients [g^"^ in terms of the ^hni\: 

1 ^ 
\=k   ^   ""K  9k-m  ^°^ ^ ^ 1' % =  ^^P^^Q) . 

m=i 

z=0 

(A-3) 

(A-4) 
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If we now refer to (6) and (7) and identify 

9n = ^n/"- '   ^=^n/"- ' 

there follows the moments in terms of the cumulants according to 

(A-5) 

k-1 
Wi,   = tf)\^%     fork 2 1,      .o = ^^P(^) (A-6) 

This is a slight generalization of [6,   (10)].    This equation is immediately 

inverted,  to yield the cumulants  in terms of moments: 

k-1 
X = 1 

k       yn   rk '0 I  "       m=| 

which generalizes [6,   (11)]. 

k-lW 
my'T<-m ^m for k 2 1, 'XQ = An VQ , (A-7) 

In terms of the normalized cumulants and moments defined in (62) and 

(69) respectively, we have 

k-1 A 

\ =k = W  S-Xk-m ^m  ^°'" ^ ^ 1'  ^0 = s^P^^o) ' 

and 

'K   =fr 

m=0 

k y 
k-1 ^ 

k " ^ -^k-m ^m 
m=J 

(A-8) 

for k > 1, (XQ =An  UQ) .        (A-9) 
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APPENDIX B. EXPANSION OF He^(x+y) 

The quantity He (x+y) is a polynomial of degree n in y. Therefore we 

can expand 

n     m 
He (x+y) = ^ Y  . , (B-1) 

where Y^I will also depend on n and x. In fact. 

r -{A He^(x+y) He^(t) 
-■ t=x -ly=0 ^(^') 

where we used [5, 22.8.8] repeatedly. Using (B-2) in (B-l), we have the 

alternative forms for the expansion. 

(B-2) 

He^(x+y) = > f"\ He  (x) y"^ = 
—^   \mj     n-m  -^ 

for n > 0 (B-3) 
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APPENDIX C. EVALUATION OF I^(y) IN (94) 

We have, from (94), 

I„(y) = r dx x" e"^ L^^hx)  for n > 0 . (C-1) 

Then 

iQ(y) = ] dx x" e"^ 1 = Y(ot+i,y) = ^^--^Y~ iFi(i'«'-2;y),      (C-2) 

using [5, 22.4.7, 6.5.2, and 6.5.12]. Also, we have from [5, 22.11.6], 

Then for n ^ 1> (C-1) can be developed as 

where we set the lower limit of the evaluated integral to zero since 

a+n > a+1 > 0. 
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APPENDIX D. FOURIER TRANSFORM OF GENERALIZED LA6UERRE POLVNOMIAL 

We wish to evaluate transform 

00 

A(a)) = I dt e^"^ t^e"^ L^;;)(t) (D-1) 

Now 

nl t<^ e-^ L^j;){t) = [^J [e-^  t""""]  for n > 0 

according to [5, 22.11.6]. Therefore for n ^ 1> 

-1/"'<d^r f^-''°i= 

(D-2) 

(D-3) 

where we used integration by parts with the fact that the integrated part is 

zero at t = 0 and "O , since a+n >^ a+1 > 0. Repeated integration by parts then 

yields 

oi> 

n: A(o)) = (-io))"  dt e'"^ e"^ t" " = pia+l+n) 

This is the result quoted in (104) 

(-ico)" 

(l-i(0) 
a+l+n 

(D-4) 
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APPENDIX E. RECURRENCE FOR EXAMPLE C 

The starting point is the moment expression in (142): 

2„2, where h = (Y+T+1)/2, Z = a)S'^/4. Denote the j^F-^ term in (E-1) by 

F  and the 

immediately 

F  and the leading factor by G ; thus p = G F . There follows 

G = G „ (^Y^^h-l)  for n > 2 . n   n-2 \2       J — 

For the iFj function, we refer to [5, 13.4.1] to get 

'n = ^ [(n-2h-3-rz)F^.2 ^ (^"2- ^ -^ F^,^] . 

If we substitute (E-2) and (E-3) into v^  = G^ F^^, and then re-apply 

(E-2) in the second term, we obtain 

2 
u„ = u) (n+Y-2+z) 1 4 

^n-2 - 7 '^ (n+Y-3)2 -f ^n-4 
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(E-1) 

(E-2) 

(E-3) 

(E-4) 

we also eliminated h. Starting values for y^ can be obtained from (E-1), 

For the special case (143) and (144), (E-4) reduces to 

v^  = 0, 
1 4, ■(n-l+z) u^_2 - 4 oi (n-2) v^_^ , (E-5) 
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with starting values 

U„ = i,  VI, = -^ TT  (1)6 

U2 = tJ 

l''l(2'^'7 ' 

Kummer's transformation [5, 13.1.27] was employed in this last equation; these 

forms afford accurate starting values for recursion (E-5). 
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APPENDIX F.  PROGRAM LISTINGS 

Eight programs are listed in this appendix. They are given in BASIC for 

the Hewlett Packard 9000 Model 520 computer. For ease of reference, a 

shorthand notation is adopted: 

p denotes 

p denotes 

H denotes 

L denotes 

RC denotes 

DM denotes 

RM denotes 

cumulative or exceedance distribution function 

probability density function 

Hermite expansion 

generalized Laguerre expansion 

recursively via cumulants 

directly via moments 

recursively via moments 

Table F-1. Shorthand Notation 

Then, for example, the combination PHRC means that this program yields the 

cumulative or exceedance distribution function in terms of a Hermite 

expansion, by means of expansion coefficients determined recursively via 

cumulants. The eight programs listed here are, in order. 
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PHRC Figures 7 and 8 

pHRC Figures 7, 9, and 10 

PHDMandRM Figures 7 (and 8) 

pHDMandRM Figures 7 (and 9, 10) 

PLRC Figures 19 and 20 

pLRC Figures 19, 21, and 22 

PLDMandRM Figures 19 (and 20) 

pLDMandRM Figures 19 (and 21, 22) 

Table F-2. Program Abbreviations 

The combination DMandRM means that this program gives the expansion 

coefficients directly via moments as well as recursively via moments; the user 

must select the procedure of interest. 

The only input statistics we have given a listing for here is the shot 

noise process used in examples D and I; in particular, the cumulant and moment 

routines are listed at the very end of PHRC and PHDMandRM, respectively. The 

figure references given in table F-2 indicate where each particular program 

was used in this report; the parenthetical references are alternative ways of 

generating those figures. The remaining figures in this report require that 

the cumulant and moment subroutines be replaced by the appropriate statistics 

of interest. 
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To save space, no subroutines are listed more than once; instead, 

comments are made indicating where the needed routines are located, according 

to the coding in table F-2. For example, in program PHDMandRM, function 

subprogram FNPhi, line 570, the comment is made that this routine has already 

been listed in PHRC. 

We now explain some of the details of the PHRC program, as an example, so 

that a user can apply these techniques and routines to his particular 

problem. The user must specify M in line 30, which is the maximum order of 

approximation desired, or the number of cumulants or moments that can be 

calculated. The notation DOUBLE in line 40 denotes INTEGER variables. The 

user must select a and e in lines 130,140; if they are chosen equal to 

OQJBQ which have been computed in lines 110,120, then expansion 

coefficients a^ = a2 = 0, or equivalently b^ = b2 = 0. However, this 

choice is recommended only as a starter on the search in a,B space. 

The CALL in line 150 is to the subroutine which calculates the expansion 

coefficients for a Hermite series, recursively via cumulants, as can be 

deciphered from the abbreviated subroutine title. The expansion coefficients 

{bp'jare calculated and the running sum of bp is calculated, both of 

which are printed on the CRT vs n. Also, a plot of the expansion coefficients 

Pp\is made in this subroutine, from which the user must decide on the order, 

N, to employ in the approximate cumulative and exceedance distribution 

function; alternatively, he can reject the sequence of [b ] so obtained, and 

re-run the program with different a,B values. 
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When a satisfactory a,e pair is obtained, the limits u^^.Uo on the 

range of arguments of the distribution must also be specified; this selection 

is aided by the print-out of the center and rms width of the density under 

investigation. A plot of 100 values of the cumulative and exceedance 

distribution functions is then made on a logarithmic ordinate. The various 

subroutines are self-explanatory and are keyed to the equation numbers in this 

report. 
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10 
20 
30 
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50 
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1 0 0 
110 
120 
130 
140 
150 
160 
170 
1S0 
190 
2 0 0 
210 
220 
2 3 0 
240 
250 
260 
270 
230 
2 9 0 
3 0 0 
3 1 0 
320 
3 3 0 
340 
350 
3 6 0 
370 
330 
3 9 0 
400 
410 
420 
430 
440 
450 
460 
470 
430 
4 9 0 
5 0 0 
510 
520 
530 
540 

STEP PLUS C0NT I NU0US PART 0F SH0T N0 I SE CDF , Pc ( u ;'   TR 7377, FIGURE 3 
COEFFICIENTS OF HERMITE EXPANSION FOUND RECURSIVELY VIA CUMULANTS 
M=S0   !  MAXIMUM ORDER OF APPROXIMATION; NUMBER OF CUMULANTS REQUIRED 
DOUBLE M,I,N,K !  INTEGERS < 2--31 = 2,147,433,643 
REDIM Cum(0: M:J , A<0: M> , HeCO: M::' 
REAL C u m < 0: 10 0 >,A(0: 10 0 >,H e(0: 1O 0),P(0: 100) 
CALL C u m u 1 an t s < fl, P 0, C u m ( * ) ) 
C e n t e r = C u m ( 1 ) 
R 2 = C u m i 2 ':> 
R rn £• = S Q R ( R 2 ) 
A 1 p h a0 = C e n t e r 
E€ta0 = Rrii£ 

Al f:iha=Ci=nt. er■ 
Beta=R^^lS*l . 5 

CALL C o e f f h r _u i a_i: u m ( M , A 1 p h a, E e t a, C u m (: * > , A ':: * > 
P R I N T " C s n t e r = " ; C e n t. e r 
PRINT "Rms =";Rm-.' 
F1 = 1..-SQR(2.*PI) 

INPUT "ORDER AND LIMITS:",N,U1,U2 
PR I NT "ORDER AND LIMITS:",N;U1;U2 
Du=(U2-Ul ) ■■■100. 
PLOTTER IS "GRAPHICS" 
GRAPHICS ON 
WINDOW Ul ,U2,-10. ,0. 
GRID Du*10.,1. 
FOR 1=0 TO 100 
U=Ul+Du*I 
T=(U-Hl phalK'Beta 
CALL Her mite(N,T,He<*)> 
S u m = 0 . 
FOR K=l TO N 
Sum = Sum + A(K > *He < K-1> 
NEXT K 
P = A(0 > *FNPh i (T >-F1*EXP(-.5*T*T)*Sum 
IF U>=0. THEN P=P+P0 
p(:i>=P 
IF P>0. THEN 400 
PENUP 
G 0 T 0 4 1 0 
PLOT U,LGT(P> 
NEXT I 
PENUP 
FOR 1=0 TO 100 
U = Ul+Di..i*I 
Pl = l.-PC I > 
IF P1>0. THEN 490 
PENUP 
G 0 T 0 5 0 0 
PLOT U,LGT(P1> 
NEXT I 
PENUP 
G 0 T 0 1 9 0 
END 
I 

P0 IS STEP AT ORIGIN 
CENTER OF PDF pi:<u> 
M E A N S Q U A R E S P R E A D 0 F p c < u ;■ 
RMS SPREAD OF pcdj) 
THE C H 0 IC E S   A 1 p h a= A 1 p h aO 
E e t a= E e t aO   W 0 U L D M A K E A ( 1 

RC 

AND 
= A t; 2: 

PROBABILITY THAT RV <    U 
ADDITION OF STEP AT ORIGIN 
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TR 7377 

PROGRAM PHRC  (cont'd) 

550 
5 60 
5 70 
5 30 
5 90 

DEF FHPhi (H::'        !  HART, page 140, #5708 & #5725 eq. 41 
Y = flES(SQR':: . 5)*;»;> 
SELECT Y 
CASE <3. 

P=1631.76026375371470+Y*<45S.26145S706092S31+Y*(36.9 327622119435951+Y* 
(. 1 0 . 06485S9749095425 + Y* . 564 1 8953676 1 3 1 36 1 4 ) !' > 

600    F'=3723.50798155430672+Y*(7113.66324695404937+Y*(6753.21696411043589+Y* 
(4032.267 010 8 3 0 04974 + Y * P)> > 

610    0 = 7542.47951019347576 + Y # ( 2 9 6 8 .0049014 3 2 3 0 872 + Y * (. 817.622 3 8 6 304544077 + Y * 
(153.077710750362216+Y*(17.3394934391395565+Y>)>) 

620    Q=3723.50798155430654+Y*<11315.1920313544055+Y*(15302.535999402fi425+Y* 
U3349. 3465612844574 +Y*Q::'> > 

630    Ph i = . 5*EXP ( -Y*Y ) *P.--Q 
640    C H 3 E < 2 6.6 

650    P=2.973S6562639399239+Y*<7.48974060596474179+Y*C6.16029935310963054+Y* 
'::5. 01 904972678426746 +Y*( 1 . 27536664472996595 + Y# . 564139583547755074;:' > ) ) 

bbH Q=3.36907520698275277+Y#(9.60396532719273787+Y*(17.0314407474660943+Y* 
(12. 043951 927855 1290 +Y*(9. 3969340 1 6235054 1 5 +Y* ( 2 . 26052852076732697 + Y > ::■ > > ) 

670    Phi =. 5*EKP(-Y*Y>*P.-Q 
630    CASE ELSE 
690    Phi =0. 
700    END SELECT 
710    IF y>0. THEN Phi=l.-Phi 
720    RETURN Phi 
730    FNEND 
740    ! 
750    SUE Hermi t.e(DOUELE N,REHL X,He(*:0     !   He.ri(X) pq. Sfl 
760    DOUBLE K 
770    He(0)=l. 
730    He(i::'=X 
790    FOR K=2 TO N 
800    He(K>=X*He(K-l>-(K-l>*He(K-2> 
310    NEXT K 
320    SUEEND • 
839 ! 
840 SUE Monint._ui a_currtnt. (DOUBLE M,REflL Cum (* > , Mom (# > ::■ i  pq. fl-^:; 
350    DOUBLE K, .J 
360    REAL Mom0 
8 7 0    M o m ( 0 ) = M o m 0 = E X P ( C u m ( 0 > ) 
880    FOR K=l TO M 
890    T=l. 
900    S=Cum(K)*Mom0 
910    FOR J=l TO K-1 
920    T = T*(K-J>.-'J 
930    S = S + T*Cum(K-J)*Mom(j;;' 
940    NEXT J 
950    Mom(K)=S 
960    NEXT K 
970    SUEEND 
980    I 
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? y 0 

1000 
1010 
1020 
1030 
1040 
1050 
1060 
1070 
10:30 
1090 
1 100 
1110 
1 120 
1 130 
1 140 
1150 
1 160 
1 170 
1 1S0 
1190 
1200 
1210 
1220 
1230 
1240 
1250 
1260 
1270 
1280 
1290 
1300 
1 3 1 0 
1320 
1330 
1340 
1350 
1360 
1370 
1380 
1390 
1400 
1410 
1420 
1430 
1440 
1450 

. TR 7377 

PROGRAM PHRC  (cont'd) 

S U B   C u rn n t. _<...< i a_m o m n t C D 0 U E L E   M , R E fl L   M o m ( # ) , f: i j m ( * j J • i e, 
DOUBLE   K,J 
REAL   Morfi0 

■Morri0 = Mi:iriiO3>   • 
C u ni ■; 0 y = L 0 G C M o m 0 > 
FOR   K=l    TO   M 
T=l. 
S = t'1 o m < K ;i 
FOR   J=l   TO   K-1 
T = T*';K-J).-J \ 
3 = S - T * M o m ( J > * C u m ( K - ■ J ) 
NEXT   J 
Curi-i(K>=S-'Morii0 
NEXT   K 
SUBEND ■     ■ 

I 

SIJ E   C o e f f h r _M i a_c u m ( D 0 U E L E   M, R E fl L   Hi p h a, E e t a. C u m ( * > , fi C * ■) :■ 
ALLOCflTE   BCOiM.) 
DOUBLE   K,J,Mx 
F = Etta*B€-ta 

C u m •: 1 > = ( C u m •:: 1 > - fl 1 p h a > • B e t a !      M 0 D I F I E D   N 0 R M fl L I Z E D 
Cum(:2>=Cum(2>.-F-l. !  CUMULflNTS FOR K=l ;i 2; pq. 63 
FOR K = 3 TO t1 
F = F*B6ta*(:K-l ::■ 
i::urri(K::'=Cum(K> ■■■F !  NORMALIZED CUMULANTF;; pq. ^2 
NEXT K 
A <! 0 > = B i; 0 ) = E X P ( C u m ( 0 >;' 
F=l. 
FOR K=l TO M 
S = 0. 
FOR J=l TO K 
S = S + C u m ( J ) * A ( K - J ) 
NEXT J 
A'::K)=S.-'K 

F = F*K 
E ■:: K ) = A ( K > * S Q R ( F > 
NEXT K 
Mx=Mx+10 
IF Mx<M THEN 1360 
Threshold=-7. 
T2=Thre3ho1d*2. 
V= 10. •■■•Threshol d 
GINIT 
PLOTTER IS "GRAPHICS" 
GRAPHICS ON 
NINDOW 0. , FLTCMx::', T2, 0. 
LINE TYPE 3      '   ' 
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TR 7377 

PROGRAM PHRC (cont'd) 

1460 
1470 
14S0 
1490 
1500 
1510 
1520 
1530 
1540 
1550 
1560 
1570 
1580 
1590 
1600 
1610 
1620 
1630 
1640 
1650 
1660 
1670 
1680 
16 90 
1 7 0 0 
1710 
1720 
1730 
1740 
1750 
1760 
1770 
17S0 
1790 
1300 
1 3 1 0 
1S20 
1330 
13 40 
1350 
1360 
1370 
1330 
13 90 
1 9 0 0 
1910 

burn 

FOR J=0 TO Mx STEP 10 
MOVE ..T,T2 
DRRN J,0. 
NEXT j' 
FOR J=T2 TO 0 
MOVE 0.,J 
DRAW Mx,J 
NEXT J 
PENUP 
LINE TYPE 1 
IMAGE 4D, 2(4X, M. 17DE:;' 
PRINT "   K E(K;' 
Surn = 0. 
FOR K=0 TO M 
E = E'::K::' 

3 u m = S u m + E * E 
P RIN T U 3 IH G 156 0;K,E,S u m 
IF E<V THEN 1660 
Y = LGT'::E) 

GOTO 1700 
IF E>-V THEN 1690 
Y = T2-LGT':;-E> 
G 0 TO 17 0 0 
Y = T h r e s h o 1 d 
PLOT K,Y 
NEXT K 
PENUP 
3UEEND 

3 U B   C u m u 1 an t ■=. <:. D 0 U E L E   M , R E H L   P 0 , C u m ( * > > !       3 H 0 T   N 0 I S E t q s .    14 7-150 
0'..•■ er-1 ap = 6.2 !       Fl V .    N0 .    PULSE3-■'SEC   *   fl VERflGE   PULSE   IiURH T 10N 
SigrMaa=l. !       PflRflMETER   OF   RHYLEIGH   HMPLITUDE   PDF 
P0 = EXP C -0'...'er 1 ap > !       PR0EflE I L I TY   OF   2ER0   flMPL I TUDE   ijF   SH0T   N0 I 3E 
fl L L 0 C fl T E   M o m K 0 : M ':> !'     fl R R fl Y   F 0 R   M 0 N E N T S 
DOUBLE   K 
" = 3 i q fii aa* 3 i g ni aa 

u m ( 0 ::■ = 0 . 

u m ( 1 ) = 0'.,' e r 1 a p * 3 i g n i a a * . 2 5 * P I * S Q R ( . 5 * P I !:■ 
u m ( 2 ) = 0 M i r 1 ap * 3 * 4 . ■■■■ 3 . 

FOR   K=3   TO   M 
C u ni ( K > = C u m < K - 2 > * 3 * K * K ■■• ( K + 1 :> 
NEXT   K 
C fl L L   M o m n t _'...i i a_c u m n t ( M , C u m ( * :> , M o m ( # ;:■ > 
Mom<0::i=Mom<0>-P0        !  MOMENT CORRECTION FOR IMPULSE AT ORIGIN 
C fl L L C u m n t _y i a_m o m n t ( M , M o m ( * ) , C L4 m < * > > 
SUEEND 
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PROGRAM pHRC 

TR 7377 

10 
20 
3 0 
40 
50 
60 
70 
80 
90 

1 0 0 
110 
120 
130 
140 
150 
160 
170 
180 
190 
2 0 0 
210 
220 
2 3 0 
240 
250 
2 6 0 
270 
2 S 0 
290 
3 0 0 
3 1 0 
3 2 0 
330 
340 
350 
3 6 0 
370 
330 
390 
4 0 0 

!  C 0 N T I N U 0IJ S P R R T 0 F S H 0 T H 0 I S E PDF , p c ( u ) T R 7 3 7 7 , F I G U R E 9 
!  COEFFICIENTS OF HERMITE EXPANSION FOUND RECURSIVELY VIA CUMULANTS 

M = S0   !  MAXIMUM ORDER OF APPROXI MAT I OH; NUMBER OF CUMULANTS REQUIRED 
INTEGERS DOUBLE M, I,N,K 

RED! M C u m < S : M ':> , A C 0 : M > , H e •'. Q : M ) 
REAL Cum C 0 : 1 00 ;■ , fl < Q: 1 00 > , He < 0 : 100; 
CALL C u m u1 an t s(M,P 0,C u m(* 
C e n t- e- r = C ijni '■. 1 ) 
R 2 = C u m ( 2 ) 
R m ■=■ = S Q R ( R 2 ) 
A 1 p h -EtO = C e n t e r 
Bet.a0 = Rm£ 

Al pha=Center- 
Be t.a=Rriis*l. 5 

CALL C o e f f h r_u i a_i: u m ( M , A 1 p h a, E e t a, C u m ( * >, A (. * > > 
PRINT "Center- = "; Center- 
PR I NT "Rms =";Rms' 
Fl = l . .'CBetasSQRCa. *PI > > 

INPUT "ORDER AND LIMITS:",N,U1,U2 
PRINT "ORDER AND L I MITS: ",N;U1;U2 
D u = < U 2 - U 1 y ■■■■■ 100. 
PLOTTER IS "GRAPHICS" 
GRAPHICS ON 
WINDOW Ul,U2,0.,.15 
GRID 6.,.03 
FOR 1=0 TO 100 
U=Ul+Du*I 
T='::U-A1 pha>.-Eeta - 
CALL Herrni teO-l, T, He<*;'> 
S u m = A < 0 ':> 
FOR K=l TO H 
S u ni = S u fi'i + A ( K ) * H e ( K > 
NEXT K 
P=Fl*EXP(-.5*T*T>*Sum 
PLOT U,P 
NEXT I 
PENUP 
G 0 T 0 1 9 0 
END 

! USE ROUTINES IN PHRC 

■3 1 2,147,4S3,648 

P0   IS   STEP   AT   ORIGIN 
CENTER   OF   PDF   pcCu) 
M E A N   S Q U ARE   S P R E fl D   0 F   p c(u) 
RMS SPREAD OF pcCu) 
THE C H 0 IC E S   Hi p h a= A 1p h aO   A N D 
Eeta=Beta0   WOULD MAKE A(1)=A'::2>=0 

RC 

PDF OF RV AT U 
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TR 7377 

PROGRAM PHDMandRM 

10 
20 
30 
40 
50 
60 
70 
80 
90 

1 0 0 
110 
120 
130 
140 
150 
160 
170 
1S0 
190 
2 0 0 
210 
220 
230 
240 
250 
260 
270 
2S0 
2 9 0 
300 
310 
320 
3 3 0 
3 4 0 
350 
3 6 0 
370 
3 8 0 
3 9 0 
400 
410 
420 
430 
440 
450 
460 
470 
480 
4 90 
5 0 0 
510 
520 
530 
540 
550 

! S T E P P L U S C 0 H T I H U 0 U S PART 0 F S H 0 T N 0 I S E C DP, P c C u > ;  C 0 E F F I C I E N T Si 0 F 
! HERMITE EXPflHSION FOUND DIRECTLY VIR MOMENTS OR RECURSIVELY VIA MOMENTS 

M=S0    !   MAXIMUM ORDER OF APPROXIMATION; NUMBER OF MOMENTS REQUIRED 
DOUBLE M,I,N,K i  INTEGERS < 2--31 = 2,147,483,643 
REDIM Mom(0:M),fl(0:M),He(e:M) 
REAL Mom ( O : 1 00 ) , A ( 0 : 1 yy ) , He C 0 : 1 OO > , P ( y : 1 00 ::■ 

P0 IS STEP AT ORIGIN 
CENTER OF PDF pcCu) 
M E A N S Q U ARE S P R E A D 0 F p c(u > 
RMS   SPREAD   OF   pd.uy 
THE   C H 0 IC E S        A 1p h a= A 1p h aO        A N D 
Beta=Eet. .a0        WOULD   MAKE   A(1)=A(2>=0 

DM 
RM 

CALL   Moments(M,PO,Mom(*>) 
C e n t e r = M o m (1 ;■ ■■■■ M o m (8) 
R 2 = M ci m ( 2 ) ••■■ M o m ( 0 ') - C e n t- s r * C e n t e r 
Rms=SQR(R2) 
Alpha0=Center 
Bet.a0=Rm^ 

Al pha=Cerit. e^ 
Bet.a=Rms#l . 5 

CALL C oe f f h d_'...' i a_mo m ( M , A 1 p ha, E e t a, M o m < * ) , A C * 
! CALL C o e f f h r-_M i a_m o m ( M , A 1 p h a, E e t a, M o m ( * > , A ( * 

P R I N T " C e n t. e r = " ; C e n t e r 
PRINT "Rms. =";Rm£ 
Fl = l . .■••■SQR(:2. *PI ) 

INPUT "ORDER AND L I M I TS: ",N,U1,U2 
PRINT "ORDER AND LIM I TS: ",N;U1;U2 
Du=aJ2-Ul ::'•■■ 100. 
PLOTTER IS "GRAPHICS" 
GRAPHICS ON 
WINDOW Ul,U2,-10.,0. 
GRID DM*10. , 1 . . 
FOR 1=0 TO 100 
U=Ul+Du*I 
T=(:U-A1 pha::'-Bet-a 
CALL Hermite(N,T,He(*>> 
S u m = 0 . 
FOR K=l TO N 
Sum = Surii + A(K)*He'::K-l) 
NEXT K 

P = R(0)#FNPhi <T;'-F1*EXP(-. 5*T*T>#Sum    !   PROBABILITY THAT RV < U 
IF U>=0. THEN P=P+p0 !    ADDITION OF STEP AT ORIGIN 
PC I)=P 
IF P>0. THEN 410 
PENUP 
GOTO 420 
PLOT U,LGT(P::' 

NEXT I 
PENUP 
F 0 R I = 0 T 0 1 0 0 
U=Ul+Du*I 
P1=1.-P(I) 
IF P1>0. THEN 500 
PENUP 
G 0 T 0 5 1 0 
PLOT U,LGT(P1) 
NEXT I   ,        ■     • 
PENUP 
GOTO 200 
END 
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PROGRAM PHDMandRM (cont'd) 

TR 7377 

see 
570 
74« 
75:0 
7S@ 
770 
830 
.340 
850 
860 
878 

DEF FNPhi <X) 
! LISTED IN PHRC 
FNEND 

!  HART, page 140, #5708 & #5725 

890 
900 
910 
92« 
930 
9 4 0 
950 
0 7 0 
0 8 0 
0 9 0 
100 
110 
120 
130 
140 
150 
160 
170 
180 
190 
2 0 0 
210 
2 2 0 
2 3 0 
240 
250 
260 
270 
2 8 0 
2 9 0 
3 0 0 
3 1 0 
3 2 0 
3 3 0 
3 40 
350 
3 6 0 
3 7 0 
380 

SUB Hermi t.e<DOUBLE N,REflL X,He<*)> 
LISTED IN PHRC 
SUBEND 

! 

SUE Hermi t.€_i (DOUBLE H,REflL X,Hi(* 
DOUBLE K 
Hi ■:; 0 > = 1 . 
Hia>=X 
FOR K=2 TO H 
H i ( K ::■ =X*H 1 ( K- 1 > + ( K- 1 > *H i ( K-2 > 
NEXT K 
SUBEND 

S U E M o m n t _ y i a_ c u m n t ( D 0 U B L E M , R E Fl L C u m < * "> , N n m '' * ) :■ 
! LISTED IN PHRC 
SUBEND 

! 

S U E C o e f f h d _'...' i .a_rfi o m < D 0 U E L E M , R E fi L Hi p h a, E e t a, M o m ( * > , fl ■: 
ALLOCflTE HeCO: M:J , F'::0: M> , ECO: M) 
DOUBLE K,J,Mx 
CALL Her m i t e ( M, - fl 1 ph a- Ee t a, He (* )) 
T = F(0:) = 1. 
FOR K=l TO M 
F=F(K>=F(K-1)*K 
T = T*B'eta 
He'::K)=He(K).-F ! 
Mom'::K>=riorii(K>/ (F*T)      ! 
NEXT K 
FOR K=0 TO n 
8 = 0. 
FOR J=0 TO K 
S = S + He(J>*Mom<:K-J) 
NEXT J 
fl(K>=S 
NEXT K 
NflT F=SQR(F) 
MAT B=fl.F 
Mx = M:;::+10 
IF Mx<M THEN 1290 
Tht-eshol d = -7. 
T2 = Thres.hol d*2. 
V=10. ■■■■■Threshol d 
G I N I T 
PLOTTER IS "GRAPHICS" 
GRAPHICS ON 
WINDOW 0. ,FLTaix> , T2, O. 
LINE TYPE 3 

He.-n 

H i xn ( X ;:i = ( - i ) ■■■n Hexn < i X ':>    eq . 74-' 
MODIFIED HERMITE POLYNOMIAL; 

NORMALIZED HERMITE POLYNOMIALS; eq. 6;; 
NORMALIZED MOMENTS re Beta: eq. 69 
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TR 7377 

PROGRAM PHDMandRM (cont'd) 

390 FOR J=0 TO Mx STEP 10 
400 MOVE J,T2 
410 DRAW J,0. 
420 NEXT J ■ 
430 FOR .J = T2 TO 0 
440 MOVE 0.,J 
450 DRAW rix,J 
460 NEXT J . 
470 PENUP 
480 LINE TYPE 1 
490 IMPlGE 4D, 2(4;-;, M. 1?DE::' 
500 PRINT "   K B<K> Sum" 
510 Surri = 0. 
520 FOR   K=0   TO   M 
530 B = B'::K) , 
540 Surii = Sum + B*B 
550 PRINT USING 1490;K,E,Sum 
560 IF B<V THEN 1590 
570 Y = LGT(:B::' 

5 8 0 G 0 T 0 1 6 3 0 
590 IF E>-V THEN 1620 
600 V = T2-LGT<:-B::' 

610 GOTO 1630 
620 Y=Thre£hold 
630 PLOT K,Y 
640 NE;:-^;T K 

650 PENUP . 
6€.<S SUBEND 
670 ! 
630 SUB Coef fhr_yi .a_mom'::rinLlELE M,REflL fl 1 pha, Bet a, Mom ( * ) , R < * ) > 
690 ALLOCflTE Hi ( 0 : M > , F ( 0 : M > , E C O : M ':> 
700 DOUBLE K,J,Mx 
710 CALL Hermite_i(M,AlphaxBeta,Hi(*>) 
720 T = F(:0> = 1 . 
730 FOR K=l TO M 
740 F = F(:K)=F(K-1 >*K 
750 T=T*Beta 
760 Hi(K>=Hi(K)xF  ! HORMRLIZED MODIFIEn HERMITE POLYNOMIALS; eqs. SO & 74 
770 Mom(K:J=Morri(K>x(:F*T) !   NORMALIZED MOMENTS re Beta; eq. fi9 
780 NE;^-^T K 
790 FOR K=0 TO M 
300 S = Mom'::K:) 
.810 FOR J=l TO K 
.820 S = S-Hi '::.J>*A(:K-.J::' 
830 NE;:;T .J 

840 AI::K)=S 

850 NE;»;T K 

.860 MAT F = SQR<F::' 

.870 MAT B=A.F 
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TR 7377 

PROGRAM PHDMandRM  (cont'd) 

1830 
1890 
1 9 0 0 
1910 
1920 
193 0 
1940 
1950 
196 0 
1970 
19S0 
1 9 9 0 
2 0 0 0 
2010 
2 0 2 0 
2 0 3 0 
2 0 4 0 
2 0 5 0 
2 0 6 0 
2 0 7 0 
2 0 8 0 
2 0 9 0 
2 1 0 0 
2110 
2120 
2130 
2140 
2150 
2160 
2170 
2180 
2190 
2 2 0 0 
2210 
2220 
2 2 3 0 
2240 
2250 
226 0 
2270 
2 280 
229 0 
2 3 0 0 
23 10 
2 3 2 0 
2 3 3 0 
2340 
2350 
2 3 6 0 
2370 
2 3 8 0 
2390 
2 4 0 0 
2410 
2420 

■:■ u m 

M;«: = Mx-K10 
IF Mx<M THEN 188p 
Threshold=-7. 
T2 = Thresho 1.1^*2. 
V=10. -Threshold 
G I N I T 
PLOTTEf?   IS    "GRAPHICS" 
GRfiPHICS   OH 
lIlHDOW   0. , FLT(Mx> ,T2, 0. 
LI'HE TYPE 3 
FOR J=0 TO Mx STEP 10 
MOVE .J,T2 
DRAW J,0. 
NEXT J 
FOR J=T2 TO 0 
MOVE 0.,J 
DRAW Mx,J 
NEXT J 
PENUP 
LINE TYPE 1 
IMAGE 4D,2(4y,M.17DE) 
PRINT "   K E'::K 

S u m = 0 . 
FOR K=0 TO M 
E=B(K) 
S u m = S u m + E * B 
PRINT USING 2080;K,E,Sum 
IF E<V THEN 2180 
Y=LGT(B) 
G0TO 2220 
IF E>-V THEN 2210 
Y=T2-LGT(-E) 
GOTO 2220 
Y = T h r €■ s h o 1 d 
PLOT K,Y 
NEXT K 
PENUP 
SHEEND 

3 U E M o rn e n 11- ( D 0 U B L E N , R E A L P 0 , C: u rn ( * ;:' >    !  S H 0 T N 0 I S E   i^s.    14 7-150 
0'■> tr-1 ap = 6 . 2 !  A V . N0 . PULSES■•■"SEC * A VER AGE PULSE IiUR AT I 0N 
Sigrriaa=l. !  PARAMETER OF RAYLEIGH AMPLITUDE PDF 
P0 = EXP ( -0>..>et- 1 ap >        I  F'R0EAE I L I TY OF ZER0 AMPL I TiJDE 0F :5H0T H0 I iE 
ALLOCATE C u m C 0:M >       !  A R R A Y F 0 R C U M U L A N T S 
DOUBLE K 
= S i g rn aa* S i g m a a 
u m ( 0 > = 0 . 
urii':: 1 >=0'...'erl ap*Si gmaa*. 25*PI*SQR( . 5*PI > 
u m ( 2 > = 0 V t- r 1 ap * S * 4 . ■■■' 3 . 

FOR K=3 TO M 
C u m ( K > = C u n I ( K - 2 ) * S * K * K ■■■' < K + 1 > 
NEXT K 
CALL M o m n t _>■> i a_c u mn t < M , C u m ( * > , M o m < * > > 
MorM(:0>=MorM(0>-P0        !  MOMENT CORRECTION FOP IMPULSE AT npIGIN 
SUEEND 
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TR 7377 

PROGRAM pHDMandRM 

10 !  CONTINUOUS PART OF SHOT NOISE PDF, pcCu); COEFFICIENTS OF HERMITE 
20 !  EXPRNSIOH FOUND DIRECTLY VIA MOMENTS OR RECURSIVELY VIR MOMENTS 
30 M=S0    !   MAXIMUM ORDER OF APPROXIMATION; NUMBER OF MOMENTS REQUIRED 
40 DOUBLE M,I,N,K !   INTEGERS < 2 •••31 = 2,147,493,648 

■ 50 R E DIM M o m C 6 : M >,A(0:M >,H e(0:M > 
60 REAL M o rn ( 0 : 10 6 ) , A ( 0 ! 100 ) , H e ( 0 : 10 O ) 
70 CALL Momen t s(M,PO,Mom <*))        !  P0 IS STEP AT 0RIGIN 
80 Cent er = Mom(1>/Mom(0 > !  CENTER OF PDF pc <u ) 
90 R 2 = M o m < 2 > ■•■• M o m < 0 > - C e n t. e r * C e n t e r  !  M E A N S Q U ARE S P R E A D 0 F p c ( u > 
100 Rm£ = SQR'::R2> !  RMS SPREAD OF p.:(u> 
110 Alp h a0 = C e n%e r !  T H E C H 0 IC E S   A 1 p h a= A 1p h aO   A N D 
120 Eeta0 = Rm£ !       Bet.a=Beta0        WOULD   MAKE   A ( 1 ) =A (2 j =0 
130 Al pha=Cent.€r 
140 Bet. a=RrMS*l . 5 
150 CALL Coef f hd_u i a_rMorM ( M , A 1 pha. Bet a. Mom C * > , A (•* > )    !   DM 
160  ! CALL C o €• f f h r _u i a_m o m ( M , A 1 p 'n a, E11 a, M o m ( * > , A ( •* > )     !   R M 
170 P R I N T " C e n t e r- = " ; C e n t e t- 
130 PRINT "Rms =";Rm£ 
190 Fl = l . .•• (Eeta*SQR(2. •i^PI ) ) 
200      INPUT " ORDER AND L I M ITS: " ,N,U1,U2 
210 PR I NT "ORDER AND LIMITS: ",N;U1;U2 
220 Du=(U2-U1 >- 100. 
230 PLOTTER IS "GRAPHICS" 
240 GRAPHICS OH 
250 WINDOW Ul ,U2,0. , . 15 
260 GRID 6.,.03 
270 F 0 R I= 0 T 0 10 0 
2S0 U=Ul+Du*I 
290 T=aj-Al pha::'••■■Beta 
300 CALL Hermi t. eCN, T,He(*> ) 
310 Surn = A(0> 
320 FOR K=l TO N 
330 S u m = S u m + A(K > * H e(K) 
340 NEXT K 
350 R=Fl*EXP(-.5*T*T>*Sum !    PDF OF RV AT U 
360 PLOT U,P 
370 NEXT I 
330 PENUP 
390 GOTO 200 
400 END •     . 
410  ! USE ROUTINES IN PHDMiiRM 
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PROfikAM PLI^C 

TR 7377 

10 
20 
3 0 
40 
50 
m 
70 
80 
90 

1 0 0 
110 
120 
130 
140 
150 
160 
170 
130 
1 90 
2 0 0 
210 
220 
230 
240 
250 
260 
2 70 
280 
2 9 0 
3 0 0 
31 0 
320 
3 3 0 
340 
350 
3 6 0 
3 7 0 
3 8 0 
3 9 0 
4 0 0 
410 
420 
430 
440 
450 
460 
470 
480 
4 9 0 
5 0 0 
510 
520 
530 
540 
550 
560 

STEP PLUS CONTIHIJOUS PART OF SHOT NOISE CDF, PcCu);  TR 7377, FIGURE 20 
::OEFFICIENTS OF GEN. LflGUERRE EXPANSION FOuhlS   RECURSIVELY VIA CUMULflNTS 
M = 7 0   !  MRftlMUM ORDER OF APPROXI MAT ION; NUMBER OF CUMULANTS REQUIRED 
DOUBLE M,I,N,K !   INTEGERS < 2-3 1 = 2,147,483,648 
REDIM Cuni';:©: M) , A<0: M) , LCO: M:J 

', F; ( 0 : 1 0 0 > 
P0 isl STEP AT ORIGIN 
CENTER OF.PDF pc<u) 
M E A N S Q U ARE S P R E A D 0 F p c(u) 
RNS SPREAD OF prCu) 
THE C H 0 IC E S   A 1 p h a= A 1p haO    A N D 
Bet.a=Beta0        WOULD   MAKE   A(1)=A(2)=0 

RC 

REAL   C u rii ( 0 : 1 0 0 >, A ( 0: 1 0 0 ) , L •■. 0 : 100 
CALL   Cuniu 1 ant s < M , PO, Cum ( * ) > 
C !=■ n t e r = C u m ( 1 > • 
R 2 = C u m ( 2 > 
Rnis = SQR'::R2) 
A 1 p hi a 0 = C e n t e r *Ce n t <=■ r ■ - R 2 - 1 . 
B s-1 a0 = R 2 ■■■■ C s n t e r 

fllpha=.74 
Beta=2.1 

CALL C o e f f 1 r_M i a_c um <'. M , A 1 p h a, B e t a, C u m ( * ) , A (■* 
P R I N T " C e n t e r = " ; C e n t e r 
PRINT "Rms =";Rms' 
fll=Alpha+1. 
01 = 1..•■■Hi 
F 1 = 1 . .■■■ F N G am m a ( A 1 > 

INPUT "ORDER AND LIN ITS: ",N,U1,U2 
PRINT "ORDER AND LIMITS:",N;U1;U2 
Du=i::U2-Ul ::'.•■■ 100. 
PLOTTER IS "GRAPHICS" 
GRAPHICS ON 
WINDOW Ul,U2,-11.,0. 
GRID 4, , 1 .  ' 
P ( 0 ) = P 0 
PLOT 0.,LGTCPO) 
FOR 1=1 TO 100 
U=Ul+Du*I 
T = U.-Eet. a 
CALL   Laquer-reCN-l , Al , T, LC*;'::• 
Sum = A(0>*FNFl CAl,T)*01 
FOR   K=l    TO   N ' 
S u ni = S u m + A ( K ) * L ( K - 1 ;■ •■■■ K 
NEXT   K 

pa)=P = pe + Fl*EXP(-T + Hl*LOG(T) >*Sum   !  PROEflEILITY THAT R'v 
IF P>0. THEN 420 
PENUP 
G 0 T 0 4 3 0 
PLOT UJLGTCP:;' 

NEXT I 
PEHUP 
FOR 1=0 TO 100 
U=Ul+Du*I 
pi = i.-pa> 
IF P1>0. THEN 510 
PENUP 
GOTO 520 
PLOT UjLGTCPl) 
NEXT I 
PENUP 
G0TO 210 
END 

I 
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TR 7377 

PROGRAM PLRC (cont'd) 

■570 
580 
590 
600 
€10 
620 
630 
€40 
S50 
66e 
670 
630 
690 
700 
710 
720 
730 
740 
750 
760 
770 
780 
79e 
300 
810 
320 
830 
340 
350 
860 
870 
830 
390 
900 
910 
920 
930 
940 
950 
960 
970 
980 
9 9 0 

1 0 0 0 
1018 
1020 

D E F F N ij am m .=t ( >■. >  !  G am m a ( >i > '■.' i a H R R T , p aq f. 
DOUBLE N,K 
N=IHT(X;j 
R = X-H 
IF N>0 OR RO0. THEN 648 
PRINT "FHGamma<X) IS HOT DEFINED FOR >i   =   ' 
STOP 
IF R>0. THEN 670 
G am m aii = 1 . 
U0TO 740 

;43 

P=439.330444060025676+R* 
P=87b2.71029?S5214S9b+R* 
P = 4 2 3 5 3.6 8 9509744 8 8 9 6 + R * 
Q = 499 .■ 0235266214 3 9 8 4 S - R * 
Q = 9940.307415 0 S 2 7 7 8 9 8-R * 
Q = 4 2 3 53.6 8 9 589744 8 9 8 8 + R * 
G am m a2 = P •••■ Q 
IF N>2 THEN 788 
IF N<2 THEN 338 
ij am m a= G am m a 2 
RETURN Gamma 
Ij a m m a = Ij a m m a 2 
FOR K=l TO N-2 
ij am m a= U am m a* ( X - K ) 
NEXT K 
RETURN Gamma 
R=l. 
FOR K=0 TO 1-N 
R = R*'::X + K::' 

NEXT K 
U am m a= b am m a 2 •■ R 
RETURN Gamma 
FNEND 

DEF FNF1<R1,X::' ! 
DOUBLE K 
T=S=1. 
FOR K=l TO 280 
T = T*X.- ^:Hl+K> 
3=S+T 
IF T<=1.E-17*S THEN RETURN S 
NEXT K 
PRINT "280 TERMS IN FNFl flT";fll;X 
RETURN S 
FNEND 

I 

(50. 1 086937529709530 + R* 
; 2888.52748138727912 +R* 
( 2 8 8 8 6 . S 6 1 7 8 9 2 6 9 8 8 7 4 + R •* 
C 139.498234157023816-R* 
( 1528.60727377952282 + R* 
2 9 8 8 . 3 S 5 3 3 8 9 2 5 6 6 4 9 9 - R * 

!  G am m a i. 2 + R ) f o r   8 

'4495872459; 
p; 
P; 
(23.031551524580125-R) 
Q; 
0': 
<    R 

1F1(1;fl1+1;X q. i::-2 
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PROGR/\M PLRC  (cont'd) ■ £? 

TR 7377 

. y :j! y 

. 0 4 0 

. 0 5 0 

. 0 b 0 

.070 

. 0 8 0 

. 0'? 0 
100 
1 10 
120 
130 
140 
.260 
.2 70 
. 2 8 0 
. 2 9 0 
.420 
.430 
.440 
.450 
.460 
,470 
. 4 8 0 
. 4 9 0 
5 0 0 
510 
520 
5 3 0 
540 
550 
560 
570 
580 
5 9 0 

. 6 0 0 

.610 

. S 2 0 

. 6 3 0 
540 

.650 

.660 

.670 

. 6 8 0 

. 6 9 0 
7 0 0 
710 
720 
730 
740 
750 

SUE LaguerreCnOUELE N,REflL fl 1 ph.a, X , L ( * ) ) 
DOUELE K 
Rl=fll ph-i-l. 
L ( 0 > = 1 . 
LC 1 )=Pll ph-a+l . -K 
FOR K=2 TO N 
L'::K) = (: (K + K + fll-;K)*L(K-l )-(K + fll >*L(K-2> >--K 
NEXT K « 
SUEEND 
j 

S U E M o m n t _'..-' i .a_ c u m n t ( D 0 U E L E M , R E Fl L C u rvi ( * > , M o m ( * > ) 
LISTED IN PHRC 
SUEEND 

! 

S U E C u m n t _y i .a_rii o m n t < D 0 U E L E M , R E Fl L M o m ( * ;' , C u m ( # ) ) 
LISTED IN PHRC 
SUEEND 

! 

SUE   Coeff 1 r_'...'i .=i_r urn (DOUELE   N,REflL   fl 1 ph-a, Bet .a, Cum ( * ) , fl< * > ::■ 
ALLOCflTE E(0: M) ,C(0:M) , D(l : M::' 
DOUELE K,.J,.Jl,Mx 
T = Bet.a 
C u m ( 1 > = C u m ■; 1 > .■■' T 
FOR K=2 TOM 
T = T*Bet.a*'::K-l > 
C u m K K > = C u m >:: K ) .■■■' T ! 
NEXT K 
fll=Rlpha+l. 
FOR ..T=l TO n 
..T1=.J+1 
T=l. 
S = fll 
FOR K=l TO -J 
T = T*':;K-.J1)..-K 

S = S + T*Curii(K) 
NEXT K 
D(:.J)=S 
NEXT .J 
fl ( 0 > = E ( 0 > = C < 0 > = E X P C C u m K U > ) 
Q=l . 
FOR K=l TO N 
S = 0. 
FOR J=l TO K 
S = S + D'::.T ;;i*C< K-.J> 
NEXT J 
C ( K > = C = S ■■•■ K 
Q = Q*K.--(fll pha+K> 
fl(K::'=C*Q 
E ( K ) = C * S Q R ( Q ':> 
NEXT K 

NORMALIZED CUMULflNTS; eq. 62 

U9 



TR 7377 

PROGRAM PLRC (cont'd) 

1760 Mx=Mx+10 
1770 IF rix<N THEN 1760         ' , 
17S0 Threshold=-7. 
1790 T2=Thr6shold*2. 
1800 'v = 10. ■■••■Threshold 
1810 G INIT 
1820 PLOTTER IS "GRAPHICS" 
1830 GRAPHICS ON 
1340 WINDOW 0. ,FLTai::::),T2,0. 
1850 LINE TVPE 3 . 
I860 FOR J = 0 TO rix STEP 10 
1870 MOVE J,T2 
1880 DRAW ..T,0. 
1890 NEXT J 
1900 FOR ..T = T2 TO 0 
1910 MOVE 0. ,.J 
1920 DRAW M;■::,.; 
1930 NEXT J 
1940 PENLIP 
1950 LINE TYPE 1 
I960 IMAGE 4D,2'::4X, M. 17riE::' 
1970 PRINT "   K               B<:K> 
1980 Surfi = 0. 
1990 FOR K=0 TO M 
2000 E = E'::K:;' 

2010 Sum = Surn + E-*E 
2020 PRINT USING I960;K,E,Sum 
2030 IF E-<V THEN 2060 
2040 Y = LGT'::E> 

2050 GOTO 2100 
2060 IF E>-V THEN 2090 
2070 V = T2-LGT':;-E> 

2080 GOTO 2100 
2090 Y = T h r e £ h 0 1 d 
2100 PLOT K,Y 
2110 NEXT K 
2120 PEN UP 
2130 SUEEND 
2140 ! 
2150 S U E C u m u1 an t s<DOUBLE M,R E A L P O, C u m 
2160 ! LISTED IN PHRC 
2310 SUEEND 

SHOT NOISE 
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TR 7-377 

PROGRAM pLRC 

10 
20 
30 
40 
50 
€0 
70 
80 
'30 

1 0 0 
110 
120 
130 
140 
150 
160 
170 
1S0 
190 
200 
210 
220 
230 
240 
250 
260 
270 
2 8 0 
290 
3 0 0 
31 a 
3 2 0 
3 3 0 
3 40 
3 5 0 
3 6 0 
370 
3 3 0 
390 
400 
410 
420 
430 
440 

!  CONTINUOUS PART OF SHOT NOISE PDF, pcCu) TR 7377, FIGURE 21 
!  COEFFS. OF GENERAL. LflGUERRE EXPANSION FOUND RECURSIVELY VIA CUMULANTS 

M=70    !  MAXIMUM ORDER OF APPROXIMATION; NUMBER OF CUMULANTS REQUIRED 
DOUBLE M,I,N,K i   INTEGERS 
R E D I M C u m < 0 : M ) , A ( 0 : M > , L ( 0 : M ::■ 
REAL   CL4m ( 0 : 1 00 ) , A ( 0 : 1 aO > , L ( 0 : 100 
CALL   C u m u1 an t s(M,P 0,C u m(*)> 
C e n t e r = C u m < 1 ) 
R 2 = C u m ( 2 ) 
Rnis = SQR(R2> 
fl 1 p h a.Q = C e n t e r * C e n t e r ■•■■ R 2 - 1 . 
E e t .=L0 = R 2 ■••■ C e n t e r 

Alph.a=. 74 
E€t.=t=2. 1 

CALL   C oe f f 1 t-_'...' i .i_i: ufii ( M , A 1 p h a, E11 a, C u m ( * > , A ( 
P R I N T    " C e n t e r   =    " ; C e n t e r ' 
PRINT   "Rnis   =";Rm;.' 
F 1 = 1 . ■■■■ C E e t a* F N G am m a ( A 1 p h a+ 1 . ) ) 

INPUT "ORDER AND L I M ITS: " ,N,U1,U2 
PR I NT " ORDER AND L I MITS: " ,N;U1:U2 
Du=aJ2-Ul ::'.■■■ 100. 
PLOTTER IS "GRAPHICS" 
GRAPHICS ON 
WINDOW U1,U2,0., . 15 
GRID 6. , .0 3 
FOR 1=0 TO 100 
U=Ul+Du*I 
IF U<0. THEN 400 
IF U>0. THEN 320 
PLOT 0.,0. 
G 0 T 0 4 0 0 
T = U.-Beta 
CALL LaguerreCN,Alpha,T, LC*)) 
S u m = A ( 0 ) 
FOR K=l TO N 
Surft = Sun-i + fl'::K )*L(K::' 
NEXT K 
P = F1*EXP<-T + A1 pha*LOG':;T 
PLOT U,P 
NEXT I 
PEN UP 
G 0 T 0 1 9 0 
END 

! USE ROUTINES IN PLRC 

■■•■•31 2, 147,483,648 

P0 IS STEP AT ORIGIN 
CENTER OF PDF pcCu) 
M E A N S Q U ARE S P R E A D 0 F p c(u > 
RMS SPREAD OF pcCu) 
THE C H 0 IC E S   A 1 p h a= A 1p h a0   fl N D 
Beta=Eetae   WOULD MAKE A(1)=A(:2>=0 

RC 

PDF OF RV AT U 
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TR 7377 

PROGRAM PLDMandRM 

10 !  STEP PLUS CnHT I HU0US PART 0F SH0T N0 I SE CDF, Pc ( u > ;    C:0EFF I r: I EHTS nF 
2 0 !  bEHERRLIZED LflGUERRE EXPflN. FOUND DIRECTLY AND RECURSIVELY VIA MOMENTS 
30 f'1 = ^0   !  MAXIMUM ORDER OF APPROXIMATION; NUMBER OF MOMENTS REPIIIPED 
40 DOUBLE M,I,N,K !  INTEGERS < 2--31 = 2, 147, 4SS, ^4R 
50 REDIM Mom<0: M> , A(0: M::', L(0: M) 
60 REAL Mom'::0: 100), ACS: 100) , L<0: 100) , PO: 100) 
70 CALL Moment s(M,P0,Mom(*))       !  P0 IS STEP AT 0RIGIN 
S 0 C e n t e r = M o m '■  1 :■ .■ - M o rn ( U ) !  C E N T E R 0 F PDF p c '■■ u > 
90 R2 = Mom(2).--Mom(0)-Cef-pt.er*Cent. er  !  MEAN SQUARE SPREAD OF pcdj) 

100 RrMS = SQR(R2) !  RMS SPREAD OF pcUj) 
110 Alp h .=10 = C e n t e r * C e n t e r .■■' R 2 - 1 .       !  T H E C H 0 I CE S   A 1 p h .=i= fl 1 p f-, ay    R N D 
'20 B e t .a0 = R 2 .■•■ C e n t «■ r !  E e t a= B €■ t aO   W 0 U L D M A K E A ( 1 :■ = A ( 2 "■< = 0 
30      Alpha=.74 
,40      Beta=2. 1 

0 CALL C o e f f 1 d_y i a_n'i o m ( M , A 1 p h a, B e t a, M o m C * ) , A < * ) )    !   D M 
.60  ! CALL Coeff 1 r_'...M .a_niom(M, Al pha, Bet a, Mom(*), R(*) )    !   RM 
7 0 P R I N T " C e n t e r = " ; C e n t e r 
80 PRINT "Rrris =" ; Rms 
90 A1=A1pha+1. 

200 01 = 1 . .■■Al 
210 Fl = l . .••FNGamma(Al ) 
220       INPUT "ORDER AND LIMITS: " , N , U 1 , U2 
230 PRINT "ORDER AND LIMITS:",H;U1;U2 
240 D u = ( U 2 - U 1 ) .■•■■ 100. 
250 PLOTTER IS "GRAPHICS" 
260 GRAPHICS ON 
270 WINDOW Ul,U2,-11,,0. 
280 GRID 4. , 1 .  ' 
2 9 0 P ( 0 ) = p 0 
300 PLOT 0.,LGT(P0) 
310 FOR 1=1 TO 100 
3 2 0 U = U 1 + D u * I 
330 T = U.-Beta 
340 CALL Laguerre(N-l,fll,T,L(»)) 
350 Sum=A(0)*FNFlCAl,T)*01 
360 FOR K=l TO N 
3 70 S u m = S u m + A < K ) * L ( K - 1 ) .■■' K 
380 NEXT K 
390 Pt: I )=P = P0 + Fl*EXP(-T + Al*LnG';:T) )*SurM   !   PROBABILITY THAT RV < U 
400 IF P>0. THEN 430 
410 PENUP 
42 0 GOTO 440 
430 PLOT U,LGTCP) 
440 NEXT r 
450 PENUP 
4 6 0 F 0 R I = 0 T 0 1 0 0 
470 U=Ul+Du*I 
480 P1 = 1.-PC I) 
490 IF P1>0. THEN 520 
500 PENUP 
5 1 0 G 0 T 0 5 3 0 
520 PLOT UjLGTCPl) 
530 NEXT I , 
540 PENUP 
550 GOTO 220 
560 END 
570 ! 
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TR 7377 

PROGRAM PLDMandRC (cont'd) 

5 8 & 
590 

910 
920 
930 

. 0 2 0 

. 0 3 0 

.040 

. 0 5 0 
120 
130 
140 
150 
.270 
. 2 S 0 
2 9 0 
3 0 0 
3 1 0 
320 
3 3 0 
340 
35 0 
3 6 0 
370 

. 3 S 0 
3 9 0 

. 4 0 0 
;410 
.420 
.4 30 
.440 
.450 
.460 
.470 
.430 
. 4 9 0 
5 0 0 
510 
520 
530 
540 
550 
.560 
570 
5 3 0 
590 

. 6 0 0 

D E F F N G .am m .a (! X !>  !  G .am rip -a < 
! LISTED IN PLRC 
FHEND 

! 

DEF FNFl(:ni,X> 
! LISTED IN PLRC 
FHEHD 

' i a HART, p .aq e 52, #524:: 

1 F 1 C 1 ; fl 1 + 1 ; >0 

S U E L a g u e r r e ( D 0 U B L E N , R E fl L fl 1 p h a, X , L ( 
LISTED IN PLRC 
SUEEND 

Lrr-..al ph 

!  NORMALIZED MOMENTS re 
!  fllpha and Beta; eq. 1 IS 

SUE   MorMnt_yi .a_cumnt (DOUBLE   M,REflL   Cum ( * ) , Mom ( * > ) 
LISTED IN PHRC 
SUEEND 
I 

S U E C o e f f 1 d_'...' i .a_m o m ( D 0 U E L E M , R E fl L fll p h a, E e t a, M o m < * > , fl C * > > 
ALLOCflTE B(0:M> 
DOUBLE K,Kl,.J,Mx 
T=l. 
FOR K=l TO M 
T = T*(fll pha+K:J*Eeta 
M Q m (K ':> = M o m <. K ':> .■•■' T 
NEXT K 
Q=l. 
fl (0 ;■ = B (0 ;■ = M o fll ■; 0) 
FOR K=l TO M 
K1=K+1 
T=l. 
S = n o m < 0 ;■ 
FOR .J=l TO K 
T=T*(J-Ki >.•■■■.; 
S = S + T*Moni(:.j::' 
NEXT .T 
Q = Q*':: Al ph.a+K).-K 
fl'::K:)=S 
B(K)=S*SQRI::Q::' 

NEXT K 
Mx=Mx+10 
IF Mx<M THEN 1510 
Threshold=-7. 
T2=Threshold#2. 
V=10.  ■Thf-eshol d 
G I N I T 
PLOTTER IS "GRAPHICS" 
GRflPHICS ON 
WINDOW 0.,FLT(Mx>,T2,0. 
LINE TYPE 3 
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TR 7377 

PROGRAM PLDMandRM (cont'd) 

1 6 1 0 
1620 
1 6 3 0 
1640 
1650 
1660 
1670 
1680 
1690 
1700 
1710 
1720 
1730 
1740 
1750 
1760 
1770 
1780 
1790 
1800 
1 8 1 0 
18 20 
1830 
1840 
1850 
I860 
1870 
1880 
1890 
1900 
1910 
1920 
1930 
1940 
1950 
I960 
1970 
1980 
1990 
2000 
2010 
2020 
2030 
2040 
2050 
2060 
2070 
2080 
2 090 
2100 
2110 
2120 

FOR J=0 TO Mx STEP 10 
MOVE J,T2 
DRAW J,0. 
NEXT J 
FOR ..T = T2 TO 0 
MOVE 0. ,.J 
DRAW Mx,J 
NEXT J , ,   ■ 
PENUP 
LINE TYPE 1 
IMAGE 4D,2(:4X, M. 17DE::' 
PRINT "   K BiKj Sum" 
S u rri = 0 . 
FOR K=0 TO M 
E=E(K) 
S u fii = S u m + E * E 
PR I NT US ING 1710;K,B,Sum 
IF B<V THEN 1810  ' ' 
Y = LGT'::B) 

GOTO 1350 
IF E>-V THEN 1840 
V = T2-LGT(-E::' 
GOTO 1850 
Y=Threshold 
PLOT K,Y 
NEXT K ■ 
PENUP 
SUEEND 

! 

SU B C o e f f 1 f-_y i a_m o m ':. D 0 U E L E M , R E fl L A 1 p h a, E e t a, M o m < * ) , A ( * ) :■ 
ALLOCATE BC0:M> 
DOUBLE K,Kl,J,Mx . , ^^ 
T=l. 
FOR K=l TO M • 
T = T * ■; A 1 p h a+ K ::■ * B e t. a !  N 0 R M A L I Z E D M 0 M E H T S r- e 
Mom(K)=MiDm'::K)/T !  Alpha and Beta; eq. 11: 
NEXT K 
Q=l. 
A ■; 0;' = B <: 0 ;■ = M O m (0 ::■ 
FOR K=l TO M 
K1=K+1 
T=l. 
S=Mom(K>-A(0> 
FOR J=l TO K-1 
T = T*<J-Ki::'.-J 
S = S-T* A (.;::■ 
NEXT J 
IF K MOD 2=1 THEN S=-S 
A<:K;'=S 
Q = G*':: Al pha+K;:'.'-K 
B ( K > = S * S Q R ( Q > 
NEXT K ■ 

■124 



TR 7377 

PROGRAM PLDMandRM (cont'd) 

2130 nx=Mx+10 
2140 IF r'1x<r'1 THEN 2130 
2150 Threshold=-?. 
2160 T2 = Thre=.hol d*2. 
2170 V =10. ■■■■• T h r e s h o 1 d 
2180 GINIT 
2190 PLOTTER IS "GRRPHICS" 
2200 GRAPHICS ON 
2210 WINDOW 0. jFLTCMx::', T2,0. 
2220 LINE TYPE 3 ' 
2230 FOR J = 0 TO Mx STEP lO 'v 
2240 MOVE .J,T2 
2250 DRAW J,0. 
2260 NEXT J 
2270 FOR .J = T2 TO 0  . 
2280 MOVE 0.,J 
2290 DRAW MXj.J 
2300 NEXT J 
2310 PENUP ■' 
2320 LINE TYPE 1 
2330 IMAGE 411. 2 ( 4X, M . 1 7DE > 
2340 PRINT "   K B<K> Sum' 
2350 Surii = 0. 
2360 FOR K=0 TO M 
2370 B = E'::K> 

2380 Sum=3um+E*E 
2390 PRINT USING 2330;K,E,Sum 
2400 IF E<V THEN 2430 
2410 Y = LGT'::E::' 

2420 GOTO 2470 
2430 IF E>-V THEN 2460 
2440 Y = T2-LGT ■::-£> 
2450 GOTO 2470 
2460 Y=Thrgshold      ■      ' 
2470 PLOT K,Y 
2480 NEXT K 
2490 PENUP 
2500 SUEEND ' ,        ' 
2510 ! 
2520 S U E M o m e n t s- ( D 0 U B L E M , R E A L P 0 , M o m ( * ) >        !  S H 0 T N 0 I S E 
2530  ! LISTED IN PHDM&RM 
2670 SUEEND 
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PROGRAM pLDMandRM 

10 
20 
30 
48 
50 
€0 
70 
80 
90 
100 
1 10 
120 
130 
140 
150 
160 
170 
1S0 
190 
2 0 0 
210 
2 20 
2 3 0 
240 
250 
2 6 0 
270 
2 8 0 
2 9 0 
300 
3 10 
320 
3 3 0 
340 
3 5 0 
3 6 0 
370 
3 8 0 
3 9 0 
4 0 0 
410 
420 

!  CONTINUOUS PART OF SHOT NOISE PDF, f:.c(u>; COEFFICIENTS OF GENEPflLIZED 
!  LRGUERRE EXPANSION FOUND DIRECTLV RNL RECURSIVELY VIA MOMENTS 

M=^0   !   MAXIMUM ORDER OF APPROXIMATION; NUMBER OF MOMENTS REQUIRED 
INTEGERS DOUBLE M,I,N,K 

RED IM Mom(0:M >,A(0:M),L(0:M) 
REAL M o m ( 0 : 1 0 0 > , A ':; 0 : 1 O y > , L O : 1 0 O ; 
CALL Moment s(M, PO, Mom':*) > 
C e n t e r = M o m ( 1 ). ■■■ M o m ( 0) 
R 2 = M o m ( 2 ) ■•■ M o m '■' O > - C e n t e r * C e n t e r 
R m s = S Q R C R 2 > 
A 1 p h .=10 = C e n t e r * C t n t e r ■■ R 2 - 1 . 
Bet .a0 = R2--Cent er 

Alpha=.74 
Bet-a=2. 1 

CALL C o e f f 1 d_u i a_m o m ( M , A 1 p h a, B e t a, M o m C * > , A ( * > ) 
! CALL Coef f 1 t-_:.> i a_mom ( M , A 1 pha, Bet a. Mom ( * > , A < * ) > 

P RI N T " C e n t e r = " ; C e n t e r- 
PRINT "Rms =";Rms' 
F 1 = 1 . .•■■ <:. B e t a* F N G am m a ( A 1 p h a+ 1 . ::■ ':> 

INPUT "ORDER AND LIMITS:",H,U1,U2 
PRINT "ORDER AND LIM I TS: ",N;U1;U2 
D u = t; U 2 - U 1 >.- 100. 
PLOTTER IS "GRAPHICS" 
GRAPHICS ON 
WINDOW Ul,U2,0. , . 15 
GRID 6. , ■0 3 
PLOT 0.,0. 
F Ci R 1 = 1 T 0 1 0 0 
U=Ul+Du*I 
T = U.-Eeta 
CALL L ag u e r r e < N,A 1p h a,T,L(* > > 
S u m = A i; 0 ) 
FOR K=l TO N 
S u m = S u m + A ■; K > # L < K > 
NEXT K 
P = F 1 * E X P ( - T + A 1 p h a* L 0 G ( T > > * S u m   !   P D F 0 F R V A T U 
PLOT U.P 
NEXT I 
PEHUP 
GOTO 200 
END 

! USE ROUTINES IN PLDMiiRM 

:, 147,433, 648 

P0 IS STEP AT ORIGIN 
CENTER OF PDF pc(u) 
M E A N S Q U ARE S P R E A D 0 F p c < u > 
R M S S P R E A D 0 F p c ( u > 
THE C H 0 IC E S   A 1 p h a= A 1p h au    A N D 
Beta=Beta0 WOULD   MAKE   A(1)=A(2;:'=0 

•DM 
RM 
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